1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
|
///////////////////////////////////////////////////////////////////////////////
// File: DDHGCalHEAlgo.cc
// Description: Geometry factory class for HGCal (Mix)
// Author : Raman Sehgal
// DD4hep code for, HGCalHEAlgo, developed by Sunanda Banerjee
///////////////////////////////////////////////////////////////////////////////
#include <cmath>
#include <memory>
#include <string>
#include <unordered_set>
#include <vector>
#include "DD4hep/DetFactoryHelper.h"
#include "DataFormats/Math/interface/angle_units.h"
#include "DetectorDescription/DDCMS/interface/DDPlugins.h"
#include "DetectorDescription/DDCMS/interface/DDutils.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "Geometry/HGCalCommonData/interface/HGCalGeomTools.h"
#include "Geometry/HGCalCommonData/interface/HGCalParameters.h"
#include "Geometry/HGCalCommonData/interface/HGCalTypes.h"
#include "Geometry/HGCalCommonData/interface/HGCalWaferType.h"
//#define EDM_ML_DEBUG
using namespace angle_units::operators;
struct HGCalHEAlgo {
HGCalHEAlgo() { throw cms::Exception("HGCalGeom") << "Wrong initialization to HGCalHEAlgo"; }
HGCalHEAlgo(cms::DDParsingContext& ctxt, xml_h e) {
cms::DDNamespace ns(ctxt, e, true);
cms::DDAlgoArguments args(ctxt, e);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: Creating an instance";
#endif
dd4hep::Volume mother = ns.volume(args.parentName());
waferNames_ = args.value<std::vector<std::string>>("WaferNames");
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: " << waferNames_.size() << " wafers";
for (unsigned int i = 0; i < waferNames_.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Wafer[" << i << "] " << waferNames_[i];
#endif
materials_ = args.value<std::vector<std::string>>("MaterialNames");
volumeNames_ = args.value<std::vector<std::string>>("VolumeNames");
thickness_ = args.value<std::vector<double>>("Thickness");
copyNumber_.resize(materials_.size(), 1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: " << materials_.size() << " types of volumes";
for (unsigned int i = 0; i < volumeNames_.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Volume [" << i << "] " << volumeNames_[i] << " of thickness "
<< cms::convert2mm(thickness_[i]) << " filled with " << materials_[i]
<< " first copy number " << copyNumber_[i];
#endif
layerNumbers_ = args.value<std::vector<int>>("Layers");
layerThick_ = args.value<std::vector<double>>("LayerThick");
rMixLayer_ = args.value<std::vector<double>>("LayerRmix");
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "There are " << layerNumbers_.size() << " blocks";
for (unsigned int i = 0; i < layerNumbers_.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Block [" << i << "] of thickness " << cms::convert2mm(layerThick_[i])
<< " Rmid " << cms::convert2mm(rMixLayer_[i]) << " with " << layerNumbers_[i]
<< " layers";
#endif
layerType_ = args.value<std::vector<int>>("LayerType");
layerSense_ = args.value<std::vector<int>>("LayerSense");
firstLayer_ = args.value<int>("FirstLayer");
absorbMode_ = args.value<int>("AbsorberMode");
sensitiveMode_ = args.value<int>("SensitiveMode");
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "First Layer " << firstLayer_ << " and "
<< "Absober:Sensitive mode " << absorbMode_ << ":" << sensitiveMode_;
#endif
layerCenter_ = args.value<std::vector<int>>("LayerCenter");
#ifdef EDM_ML_DEBUG
for (unsigned int i = 0; i < layerCenter_.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "LayerCenter [" << i << "] " << layerCenter_[i];
#endif
if (firstLayer_ > 0) {
for (unsigned int i = 0; i < layerType_.size(); ++i) {
if (layerSense_[i] > 0) {
int ii = layerType_[i];
copyNumber_[ii] = firstLayer_;
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "First copy number for layer type " << i << ":" << ii << " with "
<< materials_[ii] << " changed to " << copyNumber_[ii];
#endif
break;
}
}
}
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "There are " << layerType_.size() << " layers";
for (unsigned int i = 0; i < layerType_.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Layer [" << i << "] with material type " << layerType_[i] << " sensitive class "
<< layerSense_[i];
#endif
materialsTop_ = args.value<std::vector<std::string>>("TopMaterialNames");
namesTop_ = args.value<std::vector<std::string>>("TopVolumeNames");
layerThickTop_ = args.value<std::vector<double>>("TopLayerThickness");
layerTypeTop_ = args.value<std::vector<int>>("TopLayerType");
copyNumberTop_.resize(materialsTop_.size(), 1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: " << materialsTop_.size() << " types of volumes in the top part";
for (unsigned int i = 0; i < materialsTop_.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Volume [" << i << "] " << namesTop_[i] << " of thickness "
<< cms::convert2mm(layerThickTop_[i]) << " filled with " << materialsTop_[i]
<< " first copy number " << copyNumberTop_[i];
edm::LogVerbatim("HGCalGeom") << "There are " << layerTypeTop_.size() << " layers in the top part";
for (unsigned int i = 0; i < layerTypeTop_.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Layer [" << i << "] with material type " << layerTypeTop_[i];
#endif
materialsBot_ = args.value<std::vector<std::string>>("BottomMaterialNames");
namesBot_ = args.value<std::vector<std::string>>("BottomVolumeNames");
layerTypeBot_ = args.value<std::vector<int>>("BottomLayerType");
layerSenseBot_ = args.value<std::vector<int>>("BottomLayerSense");
layerThickBot_ = args.value<std::vector<double>>("BottomLayerThickness");
copyNumberBot_.resize(materialsBot_.size(), 1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: " << materialsBot_.size()
<< " types of volumes in the bottom part";
for (unsigned int i = 0; i < materialsBot_.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Volume [" << i << "] " << namesBot_[i] << " of thickness "
<< cms::convert2mm(layerThickBot_[i]) << " filled with " << materialsBot_[i]
<< " first copy number " << copyNumberBot_[i];
edm::LogVerbatim("HGCalGeom") << "There are " << layerTypeBot_.size() << " layers in the bottom part";
for (unsigned int i = 0; i < layerTypeBot_.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Layer [" << i << "] with material type " << layerTypeBot_[i]
<< " sensitive class " << layerSenseBot_[i];
#endif
zMinBlock_ = args.value<double>("zMinBlock");
rad100to200_ = args.value<std::vector<double>>("rad100to200");
rad200to300_ = args.value<std::vector<double>>("rad200to300");
zMinRadPar_ = args.value<double>("zMinForRadPar");
choiceType_ = args.value<int>("choiceType");
nCutRadPar_ = args.value<int>("nCornerCut");
fracAreaMin_ = args.value<double>("fracAreaMin");
waferSize_ = args.value<double>("waferSize");
waferSepar_ = args.value<double>("SensorSeparation");
sectors_ = args.value<int>("Sectors");
alpha_ = (1._pi) / sectors_;
cosAlpha_ = cos(alpha_);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: zStart " << cms::convert2mm(zMinBlock_)
<< " radius for wafer type separation uses " << rad100to200_.size()
<< " parameters; zmin " << cms::convert2mm(zMinRadPar_) << " cutoff " << choiceType_
<< ":" << nCutRadPar_ << ":" << fracAreaMin_ << " wafer width "
<< cms::convert2mm(waferSize_) << " separations " << cms::convert2mm(waferSepar_)
<< " sectors " << sectors_ << ":" << convertRadToDeg(alpha_) << ":" << cosAlpha_;
for (unsigned int k = 0; k < rad100to200_.size(); ++k)
edm::LogVerbatim("HGCalGeom") << "[" << k << "] 100-200 " << rad100to200_[k] << " 200-300 " << rad200to300_[k];
#endif
slopeB_ = args.value<std::vector<double>>("SlopeBottom");
zFrontB_ = args.value<std::vector<double>>("ZFrontBottom");
rMinFront_ = args.value<std::vector<double>>("RMinFront");
slopeT_ = args.value<std::vector<double>>("SlopeTop");
zFrontT_ = args.value<std::vector<double>>("ZFrontTop");
rMaxFront_ = args.value<std::vector<double>>("RMaxFront");
#ifdef EDM_ML_DEBUG
for (unsigned int i = 0; i < slopeB_.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Block [" << i << "] Zmin " << cms::convert2mm(zFrontB_[i]) << " Rmin "
<< cms::convert2mm(rMinFront_[i]) << " Slope " << slopeB_[i];
for (unsigned int i = 0; i < slopeT_.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Block [" << i << "] Zmin " << cms::convert2mm(zFrontT_[i]) << " Rmax "
<< cms::convert2mm(rMaxFront_[i]) << " Slope " << slopeT_[i];
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: NameSpace " << ns.name();
#endif
waferType_ = std::make_unique<HGCalWaferType>(rad100to200_,
rad200to300_,
cms::convert2mm((waferSize_ + waferSepar_)),
cms::convert2mm(zMinRadPar_),
choiceType_,
nCutRadPar_,
fracAreaMin_);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "==>> Constructing DDHGCalHEAlgo...";
copies_.clear();
#endif
double zi(zMinBlock_);
int laymin(0);
for (unsigned int i = 0; i < layerNumbers_.size(); i++) {
double zo = zi + layerThick_[i];
double routF = HGCalGeomTools::radius(zi, zFrontT_, rMaxFront_, slopeT_);
int laymax = laymin + layerNumbers_[i];
double zz = zi;
double thickTot(0);
for (int ly = laymin; ly < laymax; ++ly) {
int ii = layerType_[ly];
int copy = copyNumber_[ii];
double hthick = 0.5 * thickness_[ii];
double rinB = HGCalGeomTools::radius(zo, zFrontB_, rMinFront_, slopeB_);
zz += hthick;
thickTot += thickness_[ii];
std::string name = volumeNames_[ii] + std::to_string(copy);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: Layer " << ly << ":" << ii << " Front " << cms::convert2mm(zi)
<< ", " << cms::convert2mm(routF) << " Back " << cms::convert2mm(zo) << ", "
<< cms::convert2mm(rinB) << " superlayer thickness "
<< cms::convert2mm(layerThick_[i]);
#endif
dd4hep::Material matter = ns.material(materials_[ii]);
dd4hep::Volume glog;
if (layerSense_[ly] < 1) {
std::vector<double> pgonZ, pgonRin, pgonRout;
if (layerSense_[ly] == 0 || absorbMode_ == 0) {
double rmax =
(std::min(routF, HGCalGeomTools::radius(zz + hthick, zFrontT_, rMaxFront_, slopeT_)) * cosAlpha_) -
tol1_;
pgonZ.emplace_back(-hthick);
pgonZ.emplace_back(hthick);
pgonRin.emplace_back(rinB);
pgonRin.emplace_back(rinB);
pgonRout.emplace_back(rmax);
pgonRout.emplace_back(rmax);
} else {
HGCalGeomTools::radius(zz - hthick,
zz + hthick,
zFrontB_,
rMinFront_,
slopeB_,
zFrontT_,
rMaxFront_,
slopeT_,
-layerSense_[ly],
pgonZ,
pgonRin,
pgonRout);
for (unsigned int isec = 0; isec < pgonZ.size(); ++isec) {
pgonZ[isec] -= zz;
pgonRout[isec] = pgonRout[isec] * cosAlpha_ - tol1_;
}
}
dd4hep::Solid solid = dd4hep::Polyhedra(sectors_, -alpha_, 2._pi, pgonZ, pgonRin, pgonRout);
ns.addSolidNS(ns.prepend(name), solid);
glog = dd4hep::Volume(solid.name(), solid, matter);
ns.addVolumeNS(glog);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: " << solid.name() << " polyhedra of " << sectors_
<< " sectors covering " << convertRadToDeg(-alpha_) << ":"
<< convertRadToDeg(-alpha_ + 2._pi) << " with " << pgonZ.size() << " sections";
for (unsigned int k = 0; k < pgonZ.size(); ++k)
edm::LogVerbatim("HGCalGeom") << "[" << k << "] z " << cms::convert2mm(pgonZ[k]) << " R "
<< cms::convert2mm(pgonRin[k]) << ":" << cms::convert2mm(pgonRout[k]);
#endif
} else {
double rins =
(sensitiveMode_ < 1) ? rinB : HGCalGeomTools::radius(zz + hthick, zFrontB_, rMinFront_, slopeB_);
double routs =
(sensitiveMode_ < 1) ? routF : HGCalGeomTools::radius(zz - hthick, zFrontT_, rMaxFront_, slopeT_);
dd4hep::Solid solid = dd4hep::Tube(rins, routs, hthick, 0.0, 2._pi);
ns.addSolidNS(ns.prepend(name), solid);
glog = dd4hep::Volume(solid.name(), solid, matter);
ns.addVolumeNS(glog);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: " << solid.name() << " Tubs made of " << matter.name()
<< " of dimensions " << cms::convert2mm(rinB) << ":" << cms::convert2mm(rins)
<< ", " << cms::convert2mm(routF) << ":" << cms::convert2mm(routs) << ", "
<< cms::convert2mm(hthick) << ", 0.0, 360.0 and positioned in: " << glog.name()
<< " number " << copy;
#endif
positionMix(ctxt, e, glog, name, copy, thickness_[ii], matter, rins, rMixLayer_[i], routs, zz);
}
dd4hep::Position r1(0, 0, zz);
mother.placeVolume(glog, copy, r1);
++copyNumber_[ii];
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: " << glog.name() << " number " << copy << " positioned in "
<< mother.name() << " at (0,0," << cms::convert2mm(zz) << ") with no rotation";
#endif
zz += hthick;
} // End of loop over layers in a block
zi = zo;
laymin = laymax;
if (std::abs(thickTot - layerThick_[i]) >= tol2_) {
if (thickTot > layerThick_[i]) {
edm::LogError("HGCalGeom") << "Thickness of the partition " << cms::convert2mm(layerThick_[i])
<< " is smaller than " << cms::convert2mm(thickTot)
<< ": thickness of all its components **** ERROR ****";
} else {
edm::LogWarning("HGCalGeom") << "Thickness of the partition " << cms::convert2mm(layerThick_[i])
<< " does not match with " << cms::convert2mm(thickTot) << " of the components";
}
}
} // End of loop over blocks
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: " << copies_.size() << " different wafer copy numbers";
int k(0);
for (std::unordered_set<int>::const_iterator itr = copies_.begin(); itr != copies_.end(); ++itr, ++k) {
edm::LogVerbatim("HGCalGeom") << "Copy [" << k << "] : " << (*itr);
}
copies_.clear();
edm::LogVerbatim("HGCalGeom") << "<<== End of DDHGCalHEAlgo construction...";
#endif
}
void positionMix(cms::DDParsingContext& ctxt,
xml_h e,
const dd4hep::Volume& glog,
const std::string& nameM,
int copyM,
double thick,
const dd4hep::Material& matter,
double rin,
double rmid,
double rout,
double zz) {
cms::DDNamespace ns(ctxt, e, true);
dd4hep::Volume glog1;
for (unsigned int ly = 0; ly < layerTypeTop_.size(); ++ly) {
int ii = layerTypeTop_[ly];
copyNumberTop_[ii] = copyM;
}
for (unsigned int ly = 0; ly < layerTypeBot_.size(); ++ly) {
int ii = layerTypeBot_[ly];
copyNumberBot_[ii] = copyM;
}
double hthick = 0.5 * thick;
// Make the top part first
std::string name = nameM + "Top";
dd4hep::Solid solid = dd4hep::Tube(rmid, rout, hthick, 0.0, 2._pi);
ns.addSolidNS(ns.prepend(name), solid);
glog1 = dd4hep::Volume(solid.name(), solid, matter);
ns.addVolumeNS(glog1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: " << solid.name() << " Tubs made of " << matter.name()
<< " of dimensions " << cms::convert2mm(rmid) << ", " << cms::convert2mm(rout) << ", "
<< cms::convert2mm(hthick) << ", 0.0, 360.0";
#endif
glog.placeVolume(glog1, 1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: " << glog1.name() << " number 1 positioned in " << glog.name()
<< " at (0,0,0) with no rotation";
#endif
double thickTot(0), zpos(-hthick);
for (unsigned int ly = 0; ly < layerTypeTop_.size(); ++ly) {
int ii = layerTypeTop_[ly];
int copy = copyNumberTop_[ii];
double hthickl = 0.5 * layerThickTop_[ii];
thickTot += layerThickTop_[ii];
name = namesTop_[ii] + std::to_string(copy);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: Layer " << ly << ":" << ii << " R " << cms::convert2mm(rmid)
<< ":" << cms::convert2mm(rout) << " Thick " << cms::convert2mm(layerThickTop_[ii]);
#endif
dd4hep::Material matter1 = ns.material(materialsTop_[ii]);
solid = dd4hep::Tube(rmid, rout, hthickl, 0.0, 2._pi);
ns.addSolidNS(ns.prepend(name), solid);
dd4hep::Volume glog2 = dd4hep::Volume(solid.name(), solid, matter1);
ns.addVolumeNS(glog2);
#ifdef EDM_ML_DEBUG
double eta1 = -log(tan(0.5 * atan(rmid / zz)));
double eta2 = -log(tan(0.5 * atan(rout / zz)));
edm::LogVerbatim("HGCalGeom") << name << " z|rin|rout " << cms::convert2mm(zz) << ":" << cms::convert2mm(rmid)
<< ":" << cms::convert2mm(rout) << " eta " << eta1 << ":" << eta2;
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: " << solid.name() << " Tubs made of " << matter1.name()
<< " of dimensions " << cms::convert2mm(rmid) << ", " << cms::convert2mm(rout)
<< ", " << cms::convert2mm(hthickl) << ", 0.0, 360.0";
#endif
zpos += hthickl;
dd4hep::Position r1(0, 0, zpos);
glog1.placeVolume(glog2, copy, r1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: Position " << glog2.name() << " number " << copy << " in "
<< glog1.name() << " at (0,0," << cms::convert2mm(zpos) << ") with no rotation";
#endif
++copyNumberTop_[ii];
zpos += hthickl;
}
if (std::abs(thickTot - thick) >= tol2_) {
if (thickTot > thick) {
edm::LogError("HGCalGeom") << "Thickness of the partition " << cms::convert2mm(thick) << " is smaller than "
<< cms::convert2mm(thickTot)
<< ": thickness of all its components in the top part **** ERROR ****";
} else {
edm::LogWarning("HGCalGeom") << "Thickness of the partition " << cms::convert2mm(thick)
<< " does not match with " << cms::convert2mm(thickTot)
<< " of the components in top part";
}
}
// Make the bottom part next
name = nameM + "Bottom";
solid = dd4hep::Tube(rin, rmid, hthick, 0.0, 2._pi);
ns.addSolidNS(ns.prepend(name), solid);
glog1 = dd4hep::Volume(solid.name(), solid, matter);
ns.addVolumeNS(glog1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: " << solid.name() << " Tubs made of " << matter.name()
<< " of dimensions " << cms::convert2mm(rin) << ", " << cms::convert2mm(rmid) << ", "
<< cms::convert2mm(hthick) << ", 0.0, 360.0";
#endif
glog.placeVolume(glog1, 1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: " << glog1.name() << " number 1 positioned in " << glog.name()
<< " at (0,0,0) with no rotation";
#endif
thickTot = 0;
zpos = -hthick;
for (unsigned int ly = 0; ly < layerTypeBot_.size(); ++ly) {
int ii = layerTypeBot_[ly];
int copy = copyNumberBot_[ii];
double hthickl = 0.5 * layerThickBot_[ii];
thickTot += layerThickBot_[ii];
name = namesBot_[ii] + std::to_string(copy);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: Layer " << ly << ":" << ii << " R " << cms::convert2mm(rin)
<< ":" << cms::convert2mm(rmid) << " Thick " << cms::convert2mm(layerThickBot_[ii]);
#endif
dd4hep::Material matter1 = ns.material(materialsBot_[ii]);
solid = dd4hep::Tube(rin, rmid, hthickl, 0.0, 2._pi);
ns.addSolidNS(ns.prepend(name), solid);
dd4hep::Volume glog2 = dd4hep::Volume(solid.name(), solid, matter1);
ns.addVolumeNS(glog2);
#ifdef EDM_ML_DEBUG
double eta1 = -log(tan(0.5 * atan(rin / zz)));
double eta2 = -log(tan(0.5 * atan(rmid / zz)));
edm::LogVerbatim("HGCalGeom") << name << " z|rin|rout " << cms::convert2mm(zz) << ":" << cms::convert2mm(rin)
<< ":" << cms::convert2mm(rmid) << " eta " << eta1 << ":" << eta2;
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: " << solid.name() << " Tubs made of " << matter1.name()
<< " of dimensions " << cms::convert2mm(rin) << ", " << cms::convert2mm(rmid)
<< ", " << cms::convert2mm(hthickl) << ", 0.0, 360.0";
#endif
zpos += hthickl;
dd4hep::Position r1(0, 0, zpos);
glog1.placeVolume(glog2, copy, r1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: Position " << glog2.name() << " number " << copy << " in "
<< glog1.name() << " at (0,0," << cms::convert2mm(zpos) << ") with no rotation";
#endif
if (layerSenseBot_[ly] != 0) {
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: z " << cms::convert2mm((zz + zpos)) << " Center " << copy
<< ":" << (copy - firstLayer_) << ":" << layerCenter_[copy - firstLayer_];
#endif
positionSensitive(ctxt, e, glog2, rin, rmid, zz + zpos, layerSenseBot_[ly], layerCenter_[copy - firstLayer_]);
}
zpos += hthickl;
++copyNumberBot_[ii];
}
if (std::abs(thickTot - thick) >= tol2_) {
if (thickTot > thick) {
edm::LogError("HGCalGeom") << "Thickness of the partition " << cms::convert2mm(thick) << " is smaller than "
<< cms::convert2mm(thickTot)
<< ": thickness of all its components in the top part **** ERROR ****";
} else {
edm::LogWarning("HGCalGeom") << "Thickness of the partition " << cms::convert2mm(thick)
<< " does not match with " << cms::convert2mm(thickTot)
<< " of the components in top part";
}
}
}
void positionSensitive(cms::DDParsingContext& ctxt,
xml_h e,
const dd4hep::Volume& glog,
double rin,
double rout,
double zpos,
int layertype,
int layercenter) {
cms::DDNamespace ns(ctxt, e, true);
static const double sqrt3 = std::sqrt(3.0);
double r = 0.5 * (waferSize_ + waferSepar_);
double R = 2.0 * r / sqrt3;
double dy = 0.75 * R;
int N = (int)(0.5 * rout / r) + 2;
const auto& xyoff = geomTools_.shiftXY(layercenter, (waferSize_ + waferSepar_));
#ifdef EDM_ML_DEBUG
int ium(0), ivm(0), iumAll(0), ivmAll(0), kount(0), ntot(0), nin(0);
std::vector<int> ntype(6, 0);
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: " << glog.name() << " rout " << cms::convert2mm(rout) << " N " << N
<< " for maximum u, v Offset; Shift " << cms::convert2mm(xyoff.first) << ":"
<< cms::convert2mm(xyoff.second) << " WaferSize "
<< cms::convert2mm((waferSize_ + waferSepar_));
#endif
for (int u = -N; u <= N; ++u) {
for (int v = -N; v <= N; ++v) {
int nr = 2 * v;
int nc = -2 * u + v;
double xpos = xyoff.first + nc * r;
double ypos = xyoff.second + nr * dy;
const auto& corner = HGCalGeomTools::waferCorner(xpos, ypos, r, R, rin, rout, false);
#ifdef EDM_ML_DEBUG
int iu = std::abs(u);
int iv = std::abs(v);
++ntot;
#endif
if (corner.first > 0) {
int type = waferType_->getType((xpos / dd4hep::mm), (ypos / dd4hep::mm), (zpos / dd4hep::mm));
int copy = HGCalTypes::packTypeUV(type, u, v);
#ifdef EDM_ML_DEBUG
if (iu > ium)
ium = iu;
if (iv > ivm)
ivm = iv;
kount++;
if (copies_.count(copy) == 0)
copies_.insert(copy);
#endif
if (corner.first == (int)(HGCalParameters::k_CornerSize)) {
#ifdef EDM_ML_DEBUG
if (iu > iumAll)
iumAll = iu;
if (iv > ivmAll)
ivmAll = iv;
++nin;
#endif
dd4hep::Position tran(xpos, ypos, 0.0);
if (layertype > 1)
type += 3;
glog.placeVolume(ns.volume(waferNames_[type]), copy, tran);
#ifdef EDM_ML_DEBUG
++ntype[type];
edm::LogVerbatim("HGCalGeom")
<< "DDHGCalHEAlgo: " << glog.name() << " number " << copy << " positioned in " << glog.name() << " at ("
<< cms::convert2mm(xpos) << "," << cms::convert2mm(ypos) << ",0) with no rotation";
#endif
}
}
}
}
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalHEAlgo: Maximum # of u " << ium << ":" << iumAll << " # of v " << ivm
<< ":" << ivmAll << " and " << nin << ":" << kount << ":" << ntot << " wafers ("
<< ntype[0] << ":" << ntype[1] << ":" << ntype[2] << ":" << ntype[3] << ":"
<< ntype[4] << ":" << ntype[5] << ") for " << glog.name() << " R "
<< cms::convert2mm(rin) << ":" << cms::convert2mm(rout);
#endif
}
//Required data members to cache the values from XML file
HGCalGeomTools geomTools_;
std::unique_ptr<HGCalWaferType> waferType_;
std::vector<std::string> waferNames_; // Wafer names
std::vector<std::string> materials_; // Materials
std::vector<std::string> volumeNames_; // Names
std::vector<double> thickness_; // Thickness of the material
std::vector<int> copyNumber_; // Initial copy numbers
std::vector<int> layerNumbers_; // Number of layers in a section
std::vector<double> layerThick_; // Thickness of each section
std::vector<double> rMixLayer_; // Partition between Si/Sci part
std::vector<int> layerType_; // Type of the layer
std::vector<int> layerSense_; // Content of a layer (sensitive?)
int firstLayer_; // Copy # of the first sensitive layer
int absorbMode_; // Absorber mode
int sensitiveMode_; // Sensitive mode
std::vector<std::string> materialsTop_; // Materials of top layers
std::vector<std::string> namesTop_; // Names of top layers
std::vector<double> layerThickTop_; // Thickness of the top sections
std::vector<int> layerTypeTop_; // Type of the Top layer
std::vector<int> copyNumberTop_; // Initial copy numbers (top section)
std::vector<std::string> materialsBot_; // Materials of bottom layers
std::vector<std::string> namesBot_; // Names of bottom layers
std::vector<double> layerThickBot_; // Thickness of the bottom sections
std::vector<int> layerTypeBot_; // Type of the bottom layers
std::vector<int> copyNumberBot_; // Initial copy numbers (bot section)
std::vector<int> layerSenseBot_; // Content of bottom layer (sensitive?)
std::vector<int> layerCenter_; // Centering of the wafers
double zMinBlock_; // Starting z-value of the block
std::vector<double> rad100to200_; // Parameters for 120-200mum trans.
std::vector<double> rad200to300_; // Parameters for 200-300mum trans.
double zMinRadPar_; // Minimum z for radius parametriz.
int choiceType_; // Type of parametrization to be used
int nCutRadPar_; // Cut off threshold for corners
double fracAreaMin_; // Minimum fractional conatined area
double waferSize_; // Width of the wafer
double waferSepar_; // Sensor separation
int sectors_; // Sectors
std::vector<double> slopeB_; // Slope at the lower R
std::vector<double> zFrontB_; // Starting Z values for the slopes
std::vector<double> rMinFront_; // Corresponding rMin's
std::vector<double> slopeT_; // Slopes at the larger R
std::vector<double> zFrontT_; // Starting Z values for the slopes
std::vector<double> rMaxFront_; // Corresponding rMax's
std::unordered_set<int> copies_; // List of copy #'s
double alpha_, cosAlpha_;
static constexpr double tol1_ = 0.01 * dd4hep::mm;
static constexpr double tol2_ = 0.00001 * dd4hep::mm;
};
static long algorithm(dd4hep::Detector& /* description */, cms::DDParsingContext& ctxt, xml_h e) {
HGCalHEAlgo heAlgo(ctxt, e);
return cms::s_executed;
}
DECLARE_DDCMS_DETELEMENT(DDCMS_hgcal_DDHGCalHEAlgo, algorithm)
|