ddcms_det_element_DDCMS_hgcal_DDHGCalTBModule

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#include "DataFormats/Math/interface/angle_units.h"
#include "DD4hep/DetFactoryHelper.h"
#include "DetectorDescription/DDCMS/interface/DDPlugins.h"
#include "DetectorDescription/DDCMS/interface/DDutils.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "FWCore/Utilities/interface/Exception.h"
#include "Geometry/HGCalCommonData/interface/HGCalGeomTools.h"
#include "Geometry/HGCalCommonData/interface/HGCalParameters.h"
#include "Geometry/HGCalCommonData/interface/HGCalTypes.h"

//#define EDM_ML_DEBUG
#ifdef EDM_ML_DEBUG
#include <unordered_set>
#endif
using namespace angle_units::operators;

static long algorithm(dd4hep::Detector& /* description */, cms::DDParsingContext& ctxt, xml_h e) {
  cms::DDNamespace ns(ctxt, e, true);
  cms::DDAlgoArguments args(ctxt, e);
  static constexpr double tol2 = 0.00001 * dd4hep::mm;

  const auto& wafers = args.value<std::vector<std::string> >("WaferName");  // Wafers
  const auto& covers = args.value<std::vector<std::string> >("CoverName");  // Insensitive layers of hexagonal size
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: " << wafers.size() << " wafers";
  unsigned int i(0);
  for (auto wafer : wafers) {
    edm::LogVerbatim("HGCalGeom") << "Wafer[" << i << "] " << wafer;
    ++i;
  }
  edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: " << covers.size() << " covers";
  i = 0;
  for (auto cover : covers) {
    edm::LogVerbatim("HGCalGeom") << "Cover[" << i << "] " << cover;
    ++i;
  }
#endif
  const auto& materials = args.value<std::vector<std::string> >("MaterialNames");  // Materials
  const auto& names = args.value<std::vector<std::string> >("VolumeNames");        // Names
  const auto& thick = args.value<std::vector<double> >("Thickness");               // Thickness of the material
  std::vector<int> copyNumber;                                                     // Initial copy numbers
  copyNumber.resize(materials.size(), 1);
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: " << materials.size() << " types of volumes";
  for (unsigned int i = 0; i < names.size(); ++i)
    edm::LogVerbatim("HGCalGeom") << "Volume [" << i << "] " << names[i] << " of thickness "
                                  << cms::convert2mm(thick[i]) << " filled with " << materials[i]
                                  << " first copy number " << copyNumber[i];
#endif
  const auto& layers = args.value<std::vector<int> >("Layers");             // Number of layers in a section
  const auto& layerThick = args.value<std::vector<double> >("LayerThick");  // Thickness of each section
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: " << layers.size() << " blocks";
  for (unsigned int i = 0; i < layers.size(); ++i)
    edm::LogVerbatim("HGCalGeom") << "Block [" << i << "] of thickness " << cms::convert2mm(layerThick[i]) << " with "
                                  << layers[i] << " layers";
#endif
  const auto& layerType = args.value<std::vector<int> >("LayerType");    // Type of the layer
  const auto& layerSense = args.value<std::vector<int> >("LayerSense");  // Content of a layer (sensitive?)
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: " << layerType.size() << " layers";
  for (unsigned int i = 0; i < layerType.size(); ++i)
    edm::LogVerbatim("HGCalGeom") << "Layer [" << i << "] with material type " << layerType[i] << " sensitive class "
                                  << layerSense[i];
#endif
  const auto& zMinBlock = args.value<double>("zMinBlock");  // Starting z-value of the block
  const auto& rMaxFine = args.value<double>("rMaxFine");    // Maximum r-value for fine wafer
  const auto& waferW = args.value<double>("waferW");        // Width of the wafer
  const auto& waferGap = args.value<double>("waferGap");    // Gap between 2 wafers
  const auto& absorbW = args.value<double>("absorberW");    // Width of the absorber
  const auto& absorbH = args.value<double>("absorberH");    // Height of the absorber
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: zStart " << cms::convert2mm(zMinBlock) << " rFineCoarse "
                                << cms::convert2mm(rMaxFine) << " wafer width " << cms::convert2mm(waferW)
                                << " gap among wafers " << cms::convert2mm(waferGap) << " absorber width "
                                << cms::convert2mm(absorbW) << " absorber height " << cms::convert2mm(absorbH);
#endif
  const auto& slopeB = args.value<std::vector<double> >("SlopeBottom");   // Slope at the lower R
  const auto& slopeT = args.value<std::vector<double> >("SlopeTop");      // Slopes at the larger R
  const auto& zFront = args.value<std::vector<double> >("ZFront");        // Starting Z values for the slopes
  const auto& rMaxFront = args.value<std::vector<double> >("RMaxFront");  // Corresponding rMax's
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: Bottom slopes " << slopeB[0] << ":" << slopeB[1] << " and "
                                << slopeT.size() << " slopes for top";
  for (unsigned int i = 0; i < slopeT.size(); ++i)
    edm::LogVerbatim("HGCalGeom") << "Block [" << i << "] Zmin " << cms::convert2mm(zFront[i]) << " Rmax "
                                  << cms::convert2mm(rMaxFront[i]) << " Slope " << slopeT[i];
#endif
  std::string idNameSpace = static_cast<std::string>(ns.name());  // Namespace of this and ALL sub-parts
  const auto& idName = args.parentName();                         // Name of the "parent" volume.
#ifdef EDM_ML_DEBUG
  std::unordered_set<int> copies;  // List of copy #'s
  edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: NameSpace " << idNameSpace << " Mother " << idName;
#endif

  // Mother module
  dd4hep::Volume module = ns.volume(idName);
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HGCalGeom") << "==>> Constructing DDHGCalTBModule...";
#endif

  double zi(zMinBlock);
  double ww = (waferW + waferGap);
  double dx = 0.5 * ww;
  double dy = 3.0 * dx * tan(30._deg);
  double rr = 2.0 * dx * tan(30._deg);
  int laymin(0);
  for (unsigned int i = 0; i < layers.size(); i++) {
    double zo = zi + layerThick[i];
    double routF = HGCalGeomTools::radius(zi, zFront, rMaxFront, slopeT);
    int laymax = laymin + layers[i];
    double zz = zi;
    double thickTot(0);
    for (int ly = laymin; ly < laymax; ++ly) {
      int ii = layerType[ly];
      int copy = copyNumber[ii];
      double rinB = (layerSense[ly] == 0) ? (zo * slopeB[0]) : (zo * slopeB[1]);
      zz += (0.5 * thick[ii]);
      thickTot += thick[ii];

      std::string name = "HGCal" + names[ii] + std::to_string(copy);
#ifdef EDM_ML_DEBUG
      edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: Layer " << ly << ":" << ii << " Front " << cms::convert2mm(zi)
                                    << ", " << cms::convert2mm(routF) << " Back " << cms::convert2mm(zo) << ", "
                                    << cms::convert2mm(rinB) << " superlayer thickness "
                                    << cms::convert2mm(layerThick[i]);
#endif

      dd4hep::Material matter = ns.material(materials[ii]);
      dd4hep::Volume glog;
      if (layerSense[ly] == 0) {
        dd4hep::Solid solid = dd4hep::Box(absorbW, absorbH, 0.5 * thick[ii]);
        ns.addSolidNS(ns.prepend(name), solid);
        glog = dd4hep::Volume(solid.name(), solid, matter);
#ifdef EDM_ML_DEBUG
        edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule test: " << solid.name() << " box of dimension "
                                      << cms::convert2mm(absorbW) << ":" << cms::convert2mm(absorbH) << ":"
                                      << cms::convert2mm(0.5 * thick[ii]);
#endif
      } else {
        dd4hep::Solid solid = dd4hep::Tube(rinB, routF, 0.5 * thick[ii], 0.0, 2._pi);
        ns.addSolidNS(ns.prepend(name), solid);
        glog = dd4hep::Volume(solid.name(), solid, matter);
#ifdef EDM_ML_DEBUG
        edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: " << solid.name() << " Tubs made of " << materials[ii]
                                      << " of dimensions " << cms::convert2mm(rinB) << ", " << cms::convert2mm(routF)
                                      << ", " << cms::convert2mm(0.5 * thick[ii]) << ", 0.0, 360.0";
#endif
        int ncol = static_cast<int>(2.0 * routF / ww) + 1;
        int nrow = static_cast<int>(routF / (ww * tan(30._deg))) + 1;
#ifdef EDM_ML_DEBUG
        int incm(0), inrm(0), kount(0), ntot(0), nin(0), nfine(0), ncoarse(0);
        edm::LogVerbatim("HGCalGeom") << glog.name() << " rout " << cms::convert2mm(routF) << " Row " << nrow
                                      << " Column " << ncol;
#endif
        double xc[6], yc[6];
        for (int nr = -nrow; nr <= nrow; ++nr) {
          int inr = (nr >= 0) ? nr : -nr;
          for (int nc = -ncol; nc <= ncol; ++nc) {
            int inc = (nc >= 0) ? nc : -nc;
            if (inr % 2 == inc % 2) {
              double xpos = nc * dx;
              double ypos = nr * dy;
              xc[0] = xpos + dx;
              yc[0] = ypos - 0.5 * rr;
              xc[1] = xpos + dx;
              yc[1] = ypos + 0.5 * rr;
              xc[2] = xpos;
              yc[2] = ypos + rr;
              xc[3] = xpos - dx;
              yc[3] = ypos + 0.5 * rr;
              xc[4] = xpos + dx;
              yc[4] = ypos - 0.5 * rr;
              xc[5] = xpos;
              yc[5] = ypos - rr;
              bool cornerAll(true);
              for (int k = 0; k < 6; ++k) {
                double rpos = std::sqrt(xc[k] * xc[k] + yc[k] * yc[k]);
                if (rpos < rinB || rpos > routF)
                  cornerAll = false;
              }
#ifdef EDM_ML_DEBUG
              ++ntot;
#endif
              if (cornerAll) {
                dd4hep::Volume glog1;
                if (layerSense[ly] == 1) {
                  double rpos = std::sqrt(xpos * xpos + ypos * ypos);
                  glog1 = (rpos < rMaxFine) ? ns.volume(wafers[0]) : ns.volume(wafers[1]);
#ifdef EDM_ML_DEBUG
                  ++nin;
                  if (rpos < rMaxFine)
                    ++nfine;
                  else
                    ++ncoarse;
#endif
                } else {
                  glog1 = ns.volume(covers[layerSense[ly] - 2]);
                }
                int copyL = HGCalTypes::packTypeUV(0, nc, nr);
#ifdef EDM_ML_DEBUG
                if (inc > incm)
                  incm = inc;
                if (inr > inrm)
                  inrm = inr;
                kount++;
                copies.insert(copy);
#endif
                dd4hep::Position tran(xpos, ypos, 0.0);
                glog.placeVolume(glog1, copyL, tran);
#ifdef EDM_ML_DEBUG
                edm::LogVerbatim("HGCalGeom")
                    << "DDHGCalModule: " << glog1.name() << " number " << copyL << " positioned in " << glog.name()
                    << " at (" << cms::convert2mm(xpos) << "," << cms::convert2mm(ypos) << ",0)";
#endif
              }
            }
          }
        }
#ifdef EDM_ML_DEBUG
        edm::LogVerbatim("HGCalGeom") << "DDHGCalModule: # of columns " << incm << " # of rows " << inrm << " and "
                                      << nin << ":" << kount << ":" << ntot << " wafers (" << nfine << ":" << ncoarse
                                      << ") for " << glog.name() << " R " << cms::convert2mm(rinB) << ":"
                                      << cms::convert2mm(routF);
#endif
      }
      dd4hep::Position r1(0, 0, zz);
      module.placeVolume(glog, copy, r1);
      ++copyNumber[ii];
#ifdef EDM_ML_DEBUG
      edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule test: " << glog.name() << " number " << copy
                                    << " positioned in " << module.name() << " at (0,0," << cms::convert2mm(zz) << ")";
#endif
      zz += (0.5 * thick[ii]);
    }  // End of loop over layers in a block
    zi = zo;
    laymin = laymax;
    if (fabs(thickTot - layerThick[i]) > tol2) {
      if (thickTot > layerThick[i]) {
        edm::LogError("HGCalGeom") << "Thickness of the partition " << cms::convert2mm(layerThick[i])
                                   << " is smaller than thickness " << cms::convert2mm(thickTot)
                                   << " of all its components **** ERROR ****\n";
      } else {
        edm::LogWarning("HGCalGeom") << "Thickness of the partition " << cms::convert2mm(layerThick[i])
                                     << " does not match with " << cms::convert2mm(thickTot) << " of the components\n";
      }
    }
  }  // End of loop over blocks

  return cms::s_executed;
}

// first argument is the type from the xml file
DECLARE_DDCMS_DETELEMENT(DDCMS_hgcal_DDHGCalTBModule, algorithm)