1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
#include "DataFormats/Math/interface/angle_units.h"
#include "DD4hep/DetFactoryHelper.h"
#include "DetectorDescription/DDCMS/interface/DDPlugins.h"
#include "DetectorDescription/DDCMS/interface/DDutils.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "FWCore/Utilities/interface/Exception.h"
#include "Geometry/HGCalCommonData/interface/HGCalGeomTools.h"
#include "Geometry/HGCalCommonData/interface/HGCalParameters.h"
#include "Geometry/HGCalCommonData/interface/HGCalTypes.h"
//#define EDM_ML_DEBUG
#ifdef EDM_ML_DEBUG
#include <unordered_set>
#endif
using namespace angle_units::operators;
static long algorithm(dd4hep::Detector& /* description */, cms::DDParsingContext& ctxt, xml_h e) {
cms::DDNamespace ns(ctxt, e, true);
cms::DDAlgoArguments args(ctxt, e);
static constexpr double tol2 = 0.00001 * dd4hep::mm;
const auto& wafers = args.value<std::vector<std::string> >("WaferName"); // Wafers
const auto& covers = args.value<std::vector<std::string> >("CoverName"); // Insensitive layers of hexagonal size
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: " << wafers.size() << " wafers";
unsigned int i(0);
for (auto wafer : wafers) {
edm::LogVerbatim("HGCalGeom") << "Wafer[" << i << "] " << wafer;
++i;
}
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: " << covers.size() << " covers";
i = 0;
for (auto cover : covers) {
edm::LogVerbatim("HGCalGeom") << "Cover[" << i << "] " << cover;
++i;
}
#endif
const auto& materials = args.value<std::vector<std::string> >("MaterialNames"); // Materials
const auto& names = args.value<std::vector<std::string> >("VolumeNames"); // Names
const auto& thick = args.value<std::vector<double> >("Thickness"); // Thickness of the material
std::vector<int> copyNumber; // Initial copy numbers
copyNumber.resize(materials.size(), 1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: " << materials.size() << " types of volumes";
for (unsigned int i = 0; i < names.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Volume [" << i << "] " << names[i] << " of thickness "
<< cms::convert2mm(thick[i]) << " filled with " << materials[i]
<< " first copy number " << copyNumber[i];
#endif
const auto& layers = args.value<std::vector<int> >("Layers"); // Number of layers in a section
const auto& layerThick = args.value<std::vector<double> >("LayerThick"); // Thickness of each section
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: " << layers.size() << " blocks";
for (unsigned int i = 0; i < layers.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Block [" << i << "] of thickness " << cms::convert2mm(layerThick[i]) << " with "
<< layers[i] << " layers";
#endif
const auto& layerType = args.value<std::vector<int> >("LayerType"); // Type of the layer
const auto& layerSense = args.value<std::vector<int> >("LayerSense"); // Content of a layer (sensitive?)
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: " << layerType.size() << " layers";
for (unsigned int i = 0; i < layerType.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Layer [" << i << "] with material type " << layerType[i] << " sensitive class "
<< layerSense[i];
#endif
const auto& zMinBlock = args.value<double>("zMinBlock"); // Starting z-value of the block
const auto& rMaxFine = args.value<double>("rMaxFine"); // Maximum r-value for fine wafer
const auto& waferW = args.value<double>("waferW"); // Width of the wafer
const auto& waferGap = args.value<double>("waferGap"); // Gap between 2 wafers
const auto& absorbW = args.value<double>("absorberW"); // Width of the absorber
const auto& absorbH = args.value<double>("absorberH"); // Height of the absorber
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: zStart " << cms::convert2mm(zMinBlock) << " rFineCoarse "
<< cms::convert2mm(rMaxFine) << " wafer width " << cms::convert2mm(waferW)
<< " gap among wafers " << cms::convert2mm(waferGap) << " absorber width "
<< cms::convert2mm(absorbW) << " absorber height " << cms::convert2mm(absorbH);
#endif
const auto& slopeB = args.value<std::vector<double> >("SlopeBottom"); // Slope at the lower R
const auto& slopeT = args.value<std::vector<double> >("SlopeTop"); // Slopes at the larger R
const auto& zFront = args.value<std::vector<double> >("ZFront"); // Starting Z values for the slopes
const auto& rMaxFront = args.value<std::vector<double> >("RMaxFront"); // Corresponding rMax's
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: Bottom slopes " << slopeB[0] << ":" << slopeB[1] << " and "
<< slopeT.size() << " slopes for top";
for (unsigned int i = 0; i < slopeT.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Block [" << i << "] Zmin " << cms::convert2mm(zFront[i]) << " Rmax "
<< cms::convert2mm(rMaxFront[i]) << " Slope " << slopeT[i];
#endif
std::string idNameSpace = static_cast<std::string>(ns.name()); // Namespace of this and ALL sub-parts
const auto& idName = args.parentName(); // Name of the "parent" volume.
#ifdef EDM_ML_DEBUG
std::unordered_set<int> copies; // List of copy #'s
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: NameSpace " << idNameSpace << " Mother " << idName;
#endif
// Mother module
dd4hep::Volume module = ns.volume(idName);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "==>> Constructing DDHGCalTBModule...";
#endif
double zi(zMinBlock);
double ww = (waferW + waferGap);
double dx = 0.5 * ww;
double dy = 3.0 * dx * tan(30._deg);
double rr = 2.0 * dx * tan(30._deg);
int laymin(0);
for (unsigned int i = 0; i < layers.size(); i++) {
double zo = zi + layerThick[i];
double routF = HGCalGeomTools::radius(zi, zFront, rMaxFront, slopeT);
int laymax = laymin + layers[i];
double zz = zi;
double thickTot(0);
for (int ly = laymin; ly < laymax; ++ly) {
int ii = layerType[ly];
int copy = copyNumber[ii];
double rinB = (layerSense[ly] == 0) ? (zo * slopeB[0]) : (zo * slopeB[1]);
zz += (0.5 * thick[ii]);
thickTot += thick[ii];
std::string name = "HGCal" + names[ii] + std::to_string(copy);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: Layer " << ly << ":" << ii << " Front " << cms::convert2mm(zi)
<< ", " << cms::convert2mm(routF) << " Back " << cms::convert2mm(zo) << ", "
<< cms::convert2mm(rinB) << " superlayer thickness "
<< cms::convert2mm(layerThick[i]);
#endif
dd4hep::Material matter = ns.material(materials[ii]);
dd4hep::Volume glog;
if (layerSense[ly] == 0) {
dd4hep::Solid solid = dd4hep::Box(absorbW, absorbH, 0.5 * thick[ii]);
ns.addSolidNS(ns.prepend(name), solid);
glog = dd4hep::Volume(solid.name(), solid, matter);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule test: " << solid.name() << " box of dimension "
<< cms::convert2mm(absorbW) << ":" << cms::convert2mm(absorbH) << ":"
<< cms::convert2mm(0.5 * thick[ii]);
#endif
} else {
dd4hep::Solid solid = dd4hep::Tube(rinB, routF, 0.5 * thick[ii], 0.0, 2._pi);
ns.addSolidNS(ns.prepend(name), solid);
glog = dd4hep::Volume(solid.name(), solid, matter);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule: " << solid.name() << " Tubs made of " << materials[ii]
<< " of dimensions " << cms::convert2mm(rinB) << ", " << cms::convert2mm(routF)
<< ", " << cms::convert2mm(0.5 * thick[ii]) << ", 0.0, 360.0";
#endif
int ncol = static_cast<int>(2.0 * routF / ww) + 1;
int nrow = static_cast<int>(routF / (ww * tan(30._deg))) + 1;
#ifdef EDM_ML_DEBUG
int incm(0), inrm(0), kount(0), ntot(0), nin(0), nfine(0), ncoarse(0);
edm::LogVerbatim("HGCalGeom") << glog.name() << " rout " << cms::convert2mm(routF) << " Row " << nrow
<< " Column " << ncol;
#endif
double xc[6], yc[6];
for (int nr = -nrow; nr <= nrow; ++nr) {
int inr = (nr >= 0) ? nr : -nr;
for (int nc = -ncol; nc <= ncol; ++nc) {
int inc = (nc >= 0) ? nc : -nc;
if (inr % 2 == inc % 2) {
double xpos = nc * dx;
double ypos = nr * dy;
xc[0] = xpos + dx;
yc[0] = ypos - 0.5 * rr;
xc[1] = xpos + dx;
yc[1] = ypos + 0.5 * rr;
xc[2] = xpos;
yc[2] = ypos + rr;
xc[3] = xpos - dx;
yc[3] = ypos + 0.5 * rr;
xc[4] = xpos + dx;
yc[4] = ypos - 0.5 * rr;
xc[5] = xpos;
yc[5] = ypos - rr;
bool cornerAll(true);
for (int k = 0; k < 6; ++k) {
double rpos = std::sqrt(xc[k] * xc[k] + yc[k] * yc[k]);
if (rpos < rinB || rpos > routF)
cornerAll = false;
}
#ifdef EDM_ML_DEBUG
++ntot;
#endif
if (cornerAll) {
dd4hep::Volume glog1;
if (layerSense[ly] == 1) {
double rpos = std::sqrt(xpos * xpos + ypos * ypos);
glog1 = (rpos < rMaxFine) ? ns.volume(wafers[0]) : ns.volume(wafers[1]);
#ifdef EDM_ML_DEBUG
++nin;
if (rpos < rMaxFine)
++nfine;
else
++ncoarse;
#endif
} else {
glog1 = ns.volume(covers[layerSense[ly] - 2]);
}
int copyL = HGCalTypes::packTypeUV(0, nc, nr);
#ifdef EDM_ML_DEBUG
if (inc > incm)
incm = inc;
if (inr > inrm)
inrm = inr;
kount++;
copies.insert(copy);
#endif
dd4hep::Position tran(xpos, ypos, 0.0);
glog.placeVolume(glog1, copyL, tran);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom")
<< "DDHGCalModule: " << glog1.name() << " number " << copyL << " positioned in " << glog.name()
<< " at (" << cms::convert2mm(xpos) << "," << cms::convert2mm(ypos) << ",0)";
#endif
}
}
}
}
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalModule: # of columns " << incm << " # of rows " << inrm << " and "
<< nin << ":" << kount << ":" << ntot << " wafers (" << nfine << ":" << ncoarse
<< ") for " << glog.name() << " R " << cms::convert2mm(rinB) << ":"
<< cms::convert2mm(routF);
#endif
}
dd4hep::Position r1(0, 0, zz);
module.placeVolume(glog, copy, r1);
++copyNumber[ii];
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModule test: " << glog.name() << " number " << copy
<< " positioned in " << module.name() << " at (0,0," << cms::convert2mm(zz) << ")";
#endif
zz += (0.5 * thick[ii]);
} // End of loop over layers in a block
zi = zo;
laymin = laymax;
if (fabs(thickTot - layerThick[i]) > tol2) {
if (thickTot > layerThick[i]) {
edm::LogError("HGCalGeom") << "Thickness of the partition " << cms::convert2mm(layerThick[i])
<< " is smaller than thickness " << cms::convert2mm(thickTot)
<< " of all its components **** ERROR ****\n";
} else {
edm::LogWarning("HGCalGeom") << "Thickness of the partition " << cms::convert2mm(layerThick[i])
<< " does not match with " << cms::convert2mm(thickTot) << " of the components\n";
}
}
} // End of loop over blocks
return cms::s_executed;
}
// first argument is the type from the xml file
DECLARE_DDCMS_DETELEMENT(DDCMS_hgcal_DDHGCalTBModule, algorithm)
|