1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
/*
* DDHGCalTBModuleX.cc
*
* Created on: 27-Aug-2019
* Author: S. Banerjee
*/
#include <unordered_set>
#include "DataFormats/Math/interface/angle_units.h"
#include "DD4hep/DetFactoryHelper.h"
#include "DetectorDescription/Core/interface/DDSplit.h"
#include "DetectorDescription/DDCMS/interface/DDPlugins.h"
#include "DetectorDescription/DDCMS/interface/DDutils.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "FWCore/Utilities/interface/Exception.h"
#include "Geometry/HGCalCommonData/interface/HGCalTypes.h"
//#define EDM_ML_DEBUG
using namespace angle_units::operators;
namespace DDHGCalGeom {
void constructLayers(const cms::DDNamespace& ns,
const std::vector<std::string>& wafers,
const std::vector<std::string>& covers,
const std::vector<int>& layerType,
const std::vector<int>& layerSense,
const std::vector<int>& maxModule,
const std::vector<std::string>& names,
const std::vector<std::string>& materials,
std::vector<int>& copyNumber,
const std::vector<double>& layerThick,
const double& absorbW,
const double& absorbH,
const double& waferTot,
const double& rMax,
const double& rMaxFine,
std::unordered_set<int>& copies,
int firstLayer,
int lastLayer,
double zFront,
double totalWidth,
bool ignoreCenter,
dd4hep::Volume& module) {
static constexpr double tolerance = 0.00001 * dd4hep::mm;
static const double tan30deg = tan(30._deg);
double zi(zFront), thickTot(0);
for (int ly = firstLayer; ly <= lastLayer; ++ly) {
int ii = layerType[ly];
int copy = copyNumber[ii];
double zz = zi + (0.5 * layerThick[ii]);
double zo = zi + layerThick[ii];
thickTot += layerThick[ii];
std::string name = "HGCal" + names[ii] + std::to_string(copy);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: " << name << " Layer " << ly << ":" << ii << " Z "
<< cms::convert2mm(zi) << ":" << cms::convert2mm(zo) << " Thick "
<< cms::convert2mm(layerThick[ii]) << " Sense " << layerSense[ly];
#endif
dd4hep::Material matter = ns.material(materials[ii]);
dd4hep::Volume glog;
if (layerSense[ly] == 0) {
dd4hep::Solid solid = dd4hep::Box(absorbW, absorbH, 0.5 * layerThick[ii]);
ns.addSolidNS(ns.prepend(name), solid);
glog = dd4hep::Volume(solid.name(), solid, matter);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: " << solid.name() << " box of dimension "
<< cms::convert2mm(absorbW) << ":" << cms::convert2mm(absorbH) << ":"
<< cms::convert2mm(0.5 * layerThick[ii]);
#endif
dd4hep::Position r1(0, 0, zz);
module.placeVolume(glog, copy, r1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: " << glog.name() << " number " << copy << " positioned in "
<< module.name() << " at (0,0," << cms::convert2mm(zz) << ") with no rotation";
#endif
} else if (layerSense[ly] > 0) {
double dx = 0.5 * waferTot;
double dy = 3.0 * dx * tan30deg;
double rr = 2.0 * dx * tan30deg;
int ncol = (int)(2.0 * rMax / waferTot) + 1;
int nrow = (int)(rMax / (waferTot * tan30deg)) + 1;
#ifdef EDM_ML_DEBUG
int incm(0), inrm(0);
edm::LogVerbatim("HGCalGeom") << module.name() << " Copy " << copy << " Type " << layerSense[ly] << " rout "
<< cms::convert2mm(rMax) << " Row " << nrow << " column " << ncol << " ncrMax "
<< maxModule[ly] << " Z " << cms::convert2mm(zz) << " Center " << ignoreCenter
<< " name " << name << " matter " << matter.name();
int kount(0);
#endif
if (maxModule[ly] >= 0) {
nrow = std::min(nrow, maxModule[ly]);
ncol = std::min(ncol, maxModule[ly]);
}
for (int nr = -nrow; nr <= nrow; ++nr) {
int inr = std::abs(nr);
for (int nc = -ncol; nc <= ncol; ++nc) {
int inc = std::abs(nc);
if ((inr % 2 == inc % 2) && (!ignoreCenter || nc != 0 || nr != 0)) {
double xpos = nc * dx;
double ypos = nr * dy;
double xc[6], yc[6];
xc[0] = xpos + dx;
yc[0] = ypos - 0.5 * rr;
xc[1] = xpos + dx;
yc[1] = ypos + 0.5 * rr;
xc[2] = xpos;
yc[2] = ypos + rr;
xc[3] = xpos - dx;
yc[3] = ypos + 0.5 * rr;
xc[4] = xpos + dx;
yc[4] = ypos - 0.5 * rr;
xc[5] = xpos;
yc[5] = ypos - rr;
bool cornerAll(true);
for (int k = 0; k < 6; ++k) {
double rpos = std::sqrt(xc[k] * xc[k] + yc[k] * yc[k]);
if (rpos > rMax)
cornerAll = false;
}
if (cornerAll) {
double rpos = std::sqrt(xpos * xpos + ypos * ypos);
dd4hep::Position tran(xpos, ypos, zz);
int copyx = HGCalTypes::packTypeUV(0, nc, nr);
if (layerSense[ly] == 1) {
dd4hep::Solid solid = ns.solid(covers[0]);
std::string name0 = name + "M" + std::to_string(copyx);
name0 = ns.prepend(name0);
dd4hep::Volume glog1 = dd4hep::Volume(name0, solid, matter);
module.placeVolume(glog1, copy, tran);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom")
<< "DDHGCalTBModuleX: " << glog1.name() << " number " << copy << " positioned in "
<< module.name() << " at (" << cms::convert2mm(xpos) << "," << cms::convert2mm(ypos) << ","
<< cms::convert2mm(zz) << ") with no rotation";
#endif
dd4hep::Volume glog2 = (rpos < rMaxFine) ? ns.volume(wafers[0]) : ns.volume(wafers[1]);
glog1.placeVolume(glog2, copyx);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: " << glog2.name() << " number " << copyx
<< " positioned in " << glog1.name() << " at (0,0,0) with no rotation";
#endif
if (layerSense[ly] == 1)
copies.insert(copy);
} else {
dd4hep::Volume glog2 = ns.volume(covers[layerSense[ly] - 1]);
copyx += (copy * 1000000);
module.placeVolume(glog2, copyx, tran);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom")
<< "DDHGCalTBModuleX: " << glog2.name() << " number " << copyx << " positioned in "
<< module.name() << " at (" << cms::convert2mm(xpos) << "," << cms::convert2mm(ypos) << ","
<< cms::convert2mm(zz) << ") with no rotation";
#endif
}
#ifdef EDM_ML_DEBUG
if (inc > incm)
incm = inc;
if (inr > inrm)
inrm = inr;
kount++;
#endif
}
}
}
}
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: # of columns " << incm << " # of rows " << inrm << " and "
<< kount << " wafers for " << module.name();
#endif
}
++copyNumber[ii];
zi = zo;
} // End of loop over layers in a block
if (fabs(thickTot - totalWidth) > tolerance) {
if (thickTot > totalWidth) {
edm::LogError("HGCalGeom") << "Thickness of the partition " << cms::convert2mm(totalWidth)
<< " is smaller than " << cms::convert2mm(thickTot)
<< ": total thickness of all its components in " << module.name() << " Layers "
<< firstLayer << ":" << lastLayer << ":" << ignoreCenter << "**** ERROR ****";
} else {
edm::LogWarning("HGCalGeom") << "Thickness of the partition " << cms::convert2mm(totalWidth)
<< " does not match with " << cms::convert2mm(thickTot) << " of the components in "
<< module.name() << " Layers " << firstLayer << ":" << lastLayer << ":"
<< ignoreCenter;
}
}
}
} // namespace DDHGCalGeom
static long algorithm(dd4hep::Detector& /* description */, cms::DDParsingContext& ctxt, xml_h e) {
cms::DDNamespace ns(ctxt, e, true);
cms::DDAlgoArguments args(ctxt, e);
const auto& wafers = args.value<std::vector<std::string> >("WaferName"); // Wafers
const auto& covers = args.value<std::vector<std::string> >("CoverName"); // Insensitive layers of hexagonal size
const auto& genMat = args.value<std::string>("GeneralMaterial"); // General material used for blocks
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: Material " << genMat << " with " << wafers.size() << " wafers";
unsigned int i(0);
for (auto wafer : wafers) {
edm::LogVerbatim("HGCalGeom") << "Wafer[" << i << "] " << wafer;
++i;
}
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: " << covers.size() << " covers";
i = 0;
for (auto cover : covers) {
edm::LogVerbatim("HGCalGeom") << "Cover[" << i << "] " << cover;
++i;
}
#endif
const auto& materials = args.value<std::vector<std::string> >("MaterialNames"); // Material names in each layer
const auto& names = args.value<std::vector<std::string> >("VolumeNames"); // Names of each layer
const auto& layerThick = args.value<std::vector<double> >("Thickness"); // Thickness of the material
std::vector<int> copyNumber; // Copy numbers (initiated to 1)
copyNumber.resize(materials.size(), 1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: " << materials.size() << " types of volumes";
for (unsigned int i = 0; i < names.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Volume [" << i << "] " << names[i] << " of thickness "
<< cms::convert2mm(layerThick[i]) << " filled with " << materials[i]
<< " first copy number " << copyNumber[i];
#endif
const auto& blockThick = args.value<std::vector<double> >("BlockThick"); // Thickness of each section
const auto& inOut = args.value<int>("InOut"); // Number of inner+outer parts
const auto& layerFrontIn = args.value<std::vector<int> >("LayerFrontIn"); // First layer index (inner) in block
const auto& layerBackIn = args.value<std::vector<int> >("LayerBackIn"); // Last layer index (inner) in block
std::vector<int> layerFrontOut; // First layer index (outner) in block
std::vector<int> layerBackOut; // Last layer index (outner) in block
if (inOut > 1) {
layerFrontOut = args.value<std::vector<int> >("LayerFrontOut");
layerBackOut = args.value<std::vector<int> >("LayerBackOut");
}
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: " << blockThick.size() << " blocks with in/out " << inOut;
for (unsigned int i = 0; i < blockThick.size(); ++i) {
if (inOut > 1)
edm::LogVerbatim("HGCalGeom") << "Block [" << i << "] of thickness " << cms::convert2mm(blockThick[i])
<< " with inner layers " << layerFrontIn[i] << ":" << layerBackIn[i]
<< " and outer layers " << layerFrontOut[i] << ":" << layerBackOut[i];
else
edm::LogVerbatim("HGCalGeom") << "Block [" << i << "] of thickness " << cms::convert2mm(blockThick[i])
<< " with inner layers " << layerFrontIn[i] << ":" << layerBackIn[i];
}
#endif
const auto& layerType = args.value<std::vector<int> >("LayerType"); // Type of the layer
const auto& layerSense = args.value<std::vector<int> >("LayerSense"); // Content of a layer
const auto& maxModule = args.value<std::vector<int> >("MaxModule"); // Maximum # of row/column
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: " << layerType.size() << " layers";
for (unsigned int i = 0; i < layerType.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Layer [" << i << "] with material type " << layerType[i] << " sensitive class "
<< layerSense[i] << " and " << maxModule[i] << " maximum row/columns";
#endif
const auto& zMinBlock = args.value<double>("zMinBlock"); // Starting z-value of the block
const auto& rMaxFine = args.value<double>("rMaxFine"); // Maximum r-value for fine wafer
const auto& waferW = args.value<double>("waferW"); // Width of the wafer
const auto& waferGap = args.value<double>("waferGap"); // Gap between 2 wafers
const auto& absorbW = args.value<double>("absorberW"); // Width of the absorber
const auto& absorbH = args.value<double>("absorberH"); // Height of the absorber
const auto& rMax = args.value<double>("rMax"); // Maximum radial extent
const auto& rMaxB = args.value<double>("rMaxB"); // Maximum radial extent of a block
double waferTot = waferW + waferGap;
std::string idName = DDSplit(args.parentName()).first;
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: zStart " << cms::convert2mm(zMinBlock) << " rFineCoarse "
<< cms::convert2mm(rMaxFine) << " wafer width " << cms::convert2mm(waferW)
<< " gap among wafers " << cms::convert2mm(waferGap) << " absorber width "
<< cms::convert2mm(absorbW) << " absorber height " << cms::convert2mm(absorbH)
<< " rMax " << cms::convert2mm(rMax) << ":" << cms::convert2mm(rMaxB);
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: NameSpace " << ns.name() << " Parent Name " << idName;
#endif
std::unordered_set<int> copies; // List of copy #'s
copies.clear();
dd4hep::Volume parent = ns.volume(args.parentName());
double zi(zMinBlock);
for (unsigned int i = 0; i < blockThick.size(); i++) {
double zo = zi + blockThick[i];
std::string name = idName + "Block" + std::to_string(i);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: Block " << i << ":" << name << " z " << cms::convert2mm(zi)
<< ":" << cms::convert2mm(zo) << " R " << cms::convert2mm(rMaxB) << " T "
<< cms::convert2mm(blockThick[i]);
#endif
dd4hep::Material matter = ns.material(genMat);
dd4hep::Solid solid = dd4hep::Tube(0, rMaxB, 0.5 * blockThick[i], 0.0, 2._pi);
ns.addSolidNS(ns.prepend(name), solid);
dd4hep::Volume glog = dd4hep::Volume(solid.name(), solid, matter);
double zz = zi + 0.5 * blockThick[i];
dd4hep::Position r1(0, 0, zz);
parent.placeVolume(glog, i, r1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: " << glog.name() << " number " << i << " positioned in "
<< args.parentName() << " at (0,0," << cms::convert2mm(zz) << ") with no rotation";
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: \t\tInside Block " << i << " Layers " << layerFrontIn[i] << ":"
<< layerBackIn[i] << " zFront " << -cms::convert2mm(0.5 * blockThick[i])
<< " thickness " << cms::convert2mm(blockThick[i]) << " ignore Center 0";
#endif
DDHGCalGeom::constructLayers(ns,
wafers,
covers,
layerType,
layerSense,
maxModule,
names,
materials,
copyNumber,
layerThick,
absorbW,
absorbH,
waferTot,
rMax,
rMaxFine,
copies,
layerFrontIn[i],
layerBackIn[i],
-0.5 * blockThick[i],
blockThick[i],
false,
glog);
if (inOut > 1) {
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: \t\tInside Block " << i << " Layers " << layerFrontOut[i]
<< ":" << layerBackOut[i] << " zFront " << -cms::convert2mm(0.5 * blockThick[i])
<< " thickness " << cms::convert2mm(blockThick[i]) << " ignore Center 1";
#endif
DDHGCalGeom::constructLayers(ns,
wafers,
covers,
layerType,
layerSense,
maxModule,
names,
materials,
copyNumber,
layerThick,
absorbW,
absorbH,
waferTot,
rMax,
rMaxFine,
copies,
layerFrontOut[i],
layerBackOut[i],
-0.5 * blockThick[i],
blockThick[i],
true,
glog);
}
zi = zo;
}
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalTBModuleX: All blocks are placed in " << cms::convert2mm(zMinBlock) << ":"
<< cms::convert2mm(zi) << " with " << copies.size() << " different wafer copy numbers";
#endif
return cms::s_executed;
}
// first argument is the type from the xml file
DECLARE_DDCMS_DETELEMENT(DDCMS_hgcal_DDHGCalTBModuleX, algorithm)
|