1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
///////////////////////////////////////////////////////////////////////////////
// File: DDHGCalWaferFullRotated.cc
// Description: Geometry factory class for a full silicon Wafer
// Created by Sunanda Banerjee, Pruthvi Suryadevara, Indranil Das
///////////////////////////////////////////////////////////////////////////////
#include "DD4hep/DetFactoryHelper.h"
#include "DetectorDescription/DDCMS/interface/DDPlugins.h"
#include "DetectorDescription/DDCMS/interface/DDutils.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "Geometry/HGCalCommonData/interface/HGCalTypes.h"
#include "Geometry/HGCalCommonData/interface/HGCalCell.h"
#include <string>
#include <vector>
#include <sstream>
//#define EDM_ML_DEBUG
static long algorithm(dd4hep::Detector& /* description */, cms::DDParsingContext& ctxt, xml_h e) {
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalWaferFullRotated: Creating an instance";
#endif
cms::DDNamespace ns(ctxt, e, true);
cms::DDAlgoArguments args(ctxt, e);
const auto& material = args.value<std::string>("ModuleMaterial");
const auto& thick = args.value<double>("ModuleThickness");
const auto& waferSize = args.value<double>("WaferSize");
const auto& waferThick = args.value<double>("WaferThickness");
const auto& waferTag = args.value<std::string>("WaferTag");
#ifdef EDM_ML_DEBUG
const auto& waferSepar = args.value<double>("SensorSeparation");
edm::LogVerbatim("HGCalGeom") << "DDHGCalWaferFullRotated: Module " << args.parentName() << " made of " << material
<< " T " << thick << " Wafer 2r " << waferSize << " Half Separation " << waferSepar
<< " T " << waferThick;
#endif
const auto& orient = args.value<std::vector<int> >("WaferOrient");
const auto& face = args.value<std::vector<int> >("WaferFace");
const auto& tag = args.value<std::vector<std::string> >("WaferPlacementIndex");
const auto& layerNames = args.value<std::vector<std::string> >("LayerNames");
const auto& materials = args.value<std::vector<std::string> >("LayerMaterials");
const auto& layerThick = args.value<std::vector<double> >("LayerThickness");
const auto& layerSizeOff = args.value<std::vector<double> >("LayerSizeOffset");
const auto& layerType = args.value<std::vector<int> >("LayerTypes");
std::vector<int> copyNumber;
copyNumber.resize(materials.size(), 1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalWaferFullRotated: " << layerNames.size() << " types of volumes";
for (unsigned int i = 0; i < layerNames.size(); ++i)
edm::LogVerbatim("HGCalGeom") << "Volume [" << i << "] " << layerNames[i] << " of thickness " << layerThick[i]
<< " size offset " << layerSizeOff[i] << " filled with " << materials[i] << " type "
<< layerType[i];
#endif
const auto& layers = args.value<std::vector<int> >("Layers");
#ifdef EDM_ML_DEBUG
std::ostringstream st1;
for (unsigned int i = 0; i < layers.size(); ++i)
st1 << " [" << i << "] " << layers[i];
edm::LogVerbatim("HGCalGeom") << "There are " << layers.size() << " blocks" << st1.str();
#endif
const auto& nCells = args.value<int>("NCells");
int cellType(-1);
std::vector<std::string> cellNames;
std::vector<int> cellOffset;
if (nCells > 0) {
cellType = args.value<int>("CellType");
cellNames = args.value<std::vector<std::string> >("CellNames");
cellOffset = args.value<std::vector<int> >("CellOffset");
}
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalWaferFullRotated: Cells/Wafer " << nCells << " Cell Type " << cellType
<< " NameSpace " << ns.name() << " # of cells " << cellNames.size();
std::ostringstream st2;
for (unsigned int i = 0; i < cellOffset.size(); ++i)
st2 << " [" << i << "] " << cellOffset[i];
edm::LogVerbatim("HGCalGeom") << "DDHGCalWaferFullRotated: " << cellOffset.size() << " types of cells with offsets "
<< st2.str();
for (unsigned int k = 0; k < cellNames.size(); ++k)
edm::LogVerbatim("HGCalGeom") << "DDHGCalWaferFullRotated: Cell[" << k << "] " << cellNames[k];
edm::LogVerbatim("HGCalGeom") << "==>> Executing DDHGCalWaferFullRotated...";
#endif
static constexpr double tol = 0.00001;
static const double sqrt3 = std::sqrt(3.0);
double rM = 0.5 * waferSize;
double RM2 = rM / sqrt3;
const int nFine(nCells), nCoarse(nCells);
HGCalCell wafer(waferSize, nFine, nCoarse);
for (unsigned int k = 0; k < tag.size(); ++k) {
// First the mother
std::vector<double> xM = {rM, 0, -rM, -rM, 0, rM};
std::vector<double> yM = {RM2, 2 * RM2, RM2, -RM2, -2 * RM2, -RM2};
std::vector<double> zw = {-0.5 * thick, 0.5 * thick};
std::vector<double> zx(2, 0), zy(2, 0), scale(2, 1.0);
std::string parentName = args.parentName() + tag[k] + waferTag;
dd4hep::Material matter = ns.material(material);
dd4hep::Solid solid = dd4hep::ExtrudedPolygon(xM, yM, zw, zx, zy, scale);
ns.addSolidNS(ns.prepend(parentName), solid);
dd4hep::Volume glogM = dd4hep::Volume(solid.name(), solid, matter);
ns.addVolumeNS(glogM);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalWaferFullRotated: " << solid.name() << " extruded polygon made of "
<< material << " z|x|y|s (0) " << zw[0] << ":" << zx[0] << ":" << zy[0] << ":"
<< scale[0] << " z|x|y|s (1) " << zw[1] << ":" << zx[1] << ":" << zy[1] << ":"
<< scale[1] << " and " << xM.size() << " edges";
for (unsigned int kk = 0; kk < xM.size(); ++kk)
edm::LogVerbatim("HGCalGeom") << "[" << kk << "] " << xM[kk] << ":" << yM[kk];
#endif
// Then the layers
std::vector<dd4hep::Volume> glogs(materials.size());
for (unsigned int ii = 0; ii < copyNumber.size(); ii++) {
copyNumber[ii] = 1;
}
double zi(-0.5 * thick), thickTot(0.0);
for (unsigned int l = 0; l < layers.size(); l++) {
unsigned int i = layers[l];
double r2 = 0.5 * (waferSize - layerSizeOff[i]);
double R2 = r2 / sqrt3;
std::vector<double> xL = {r2, 0, -r2, -r2, 0, r2};
std::vector<double> yL = {R2, 2 * R2, R2, -R2, -2 * R2, -R2};
if (copyNumber[i] == 1) {
if (layerType[i] > 0) {
zw[0] = -0.5 * waferThick;
zw[1] = 0.5 * waferThick;
} else {
zw[0] = -0.5 * layerThick[i];
zw[1] = 0.5 * layerThick[i];
}
std::string layerName = layerNames[i] + tag[k] + waferTag;
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalWaferFullRotated: Layer " << l << ": " << i << ":" << layerName << " "
<< layerSizeOff[i] << " r " << r2 << ":" << R2;
#endif
solid = dd4hep::ExtrudedPolygon(xL, yL, zw, zx, zy, scale);
ns.addSolidNS(ns.prepend(layerName), solid);
matter = ns.material(materials[i]);
glogs[i] = dd4hep::Volume(solid.name(), solid, matter);
ns.addVolumeNS(glogs[i]);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalWaferFullRotated: " << solid.name() << " extruded polygon made of "
<< materials[i] << " z|x|y|s (0) " << zw[0] << ":" << zx[0] << ":" << zy[0] << ":"
<< scale[0] << " z|x|y|s (1) " << zw[1] << ":" << zx[1] << ":" << zy[1] << ":"
<< scale[1] << " and " << xL.size() << " edges";
for (unsigned int kk = 0; kk < xL.size(); ++kk)
edm::LogVerbatim("HGCalGeom") << "[" << kk << "] " << xL[kk] << ":" << yL[kk];
#endif
}
dd4hep::Position tran0(0, 0, (zi + 0.5 * layerThick[i]));
glogM.placeVolume(glogs[i], copyNumber[i], tran0);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "DDHGCalWaferFullRotated: " << glogs[i].name() << " number " << copyNumber[i]
<< " positioned in " << glogM.name() << " at " << tran0 << " with no rotation";
#endif
++copyNumber[i];
zi += layerThick[i];
thickTot += layerThick[i];
if ((layerType[i] > 0) && (nCells > 0)) {
for (int u = 0; u < 2 * nCells; ++u) {
for (int v = 0; v < 2 * nCells; ++v) {
if (((v - u) < nCells) && ((u - v) <= nCells)) {
int placeIndex = wafer.cellPlacementIndex(1, HGCalTypes::waferFrontBack(face[k]), orient[k]);
std::pair<double, double> xy1 = wafer.cellUV2XY1(u, v, placeIndex, cellType);
double yp = xy1.second;
double xp = xy1.first;
int cell(0);
std::pair<int, int> cell1 = wafer.cellUV2Cell(u, v, placeIndex, cellType);
cell = cell1.first + cellOffset[cell1.second];
dd4hep::Position tran(xp, yp, 0);
int copy = HGCalTypes::packCellTypeUV(cellType, u, v);
glogs[i].placeVolume(ns.volume(cellNames[cell]), copy, tran);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom")
<< "DDHGCalWaferFullRotated: " << cellNames[cell] << " number " << copy << " positioned in "
<< glogs[i].name() << " at " << tran << " with no rotation";
#endif
}
}
}
}
}
if (std::abs(thickTot - thick) >= tol) {
if (thickTot > thick) {
edm::LogError("HGCalGeom") << "Thickness of the partition " << thick << " is smaller than " << thickTot
<< ": thickness of all its components **** ERROR ****";
} else {
edm::LogWarning("HGCalGeom") << "Thickness of the partition " << thick << " does not match with " << thickTot
<< " of the components";
}
}
}
return cms::s_executed;
}
DECLARE_DDCMS_DETELEMENT(DDCMS_hgcal_DDHGCalWaferFullRotated, algorithm);
|