1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
#include "DataFormats/ForwardDetId/interface/HGCSiliconDetId.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "Geometry/HGCalCommonData/interface/HGCalParameters.h"
#include "Geometry/HGCalCommonData/interface/HGCalProperty.h"
#include "Geometry/HGCalCommonData/interface/HGCalWaferType.h"
//#define EDM_ML_DEBUG
HGCalWaferType::HGCalWaferType(const std::vector<double>& rad100,
const std::vector<double>& rad200,
double waferSize,
double zMin,
int choice,
unsigned int cornerCut,
double cutArea)
: rad100_(rad100),
rad200_(rad200),
waferSize_(waferSize),
zMin_(zMin),
choice_(choice),
cutValue_(cornerCut),
cutFracArea_(cutArea) {
r_ = 0.5 * waferSize_;
R_ = sqrt3_ * waferSize_;
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "HGCalWaferType: initialized with waferR's " << waferSize_ << ":" << r_ << ":" << R_
<< " Choice " << choice_ << " Cuts " << cutValue_ << ":" << cutFracArea_ << " zMin "
<< zMin_ << " with " << rad100_.size() << ":" << rad200_.size() << " parameters for R:";
for (unsigned k = 0; k < rad100_.size(); ++k)
edm::LogVerbatim("HGCalGeom") << "[" << k << "] 100:200 " << rad100_[k] << " 200:300 " << rad200_[k];
#endif
}
int HGCalWaferType::getCassette(int index, const HGCalParameters::waferInfo_map& wafers) {
auto itr = wafers.find(index);
return ((itr == wafers.end()) ? -1 : ((itr->second).cassette));
}
int HGCalWaferType::getOrient(int index, const HGCalParameters::waferInfo_map& wafers) {
auto itr = wafers.find(index);
return ((itr == wafers.end()) ? -1 : ((itr->second).orient));
}
int HGCalWaferType::getPartial(int index, const HGCalParameters::waferInfo_map& wafers) {
auto itr = wafers.find(index);
return ((itr == wafers.end()) ? -1 : ((itr->second).part));
}
int HGCalWaferType::getType(int index, const HGCalParameters::waferInfo_map& wafers) {
auto itr = wafers.find(index);
return ((itr == wafers.end()) ? -1 : ((itr->second).type));
}
int HGCalWaferType::getType(int index, const std::vector<int>& indices, const std::vector<int>& properties) {
auto itr = std::find(std::begin(indices), std::end(indices), index);
int type = (itr == std::end(indices))
? -1
: HGCalProperty::waferThick(properties[static_cast<unsigned int>(itr - std::begin(indices))]);
return type;
}
int HGCalWaferType::getType(double xpos, double ypos, double zpos) {
std::vector<double> xc(HGCalParameters::k_CornerSize, 0);
std::vector<double> yc(HGCalParameters::k_CornerSize, 0);
xc[0] = xpos + r_;
yc[0] = ypos + 0.5 * R_;
xc[1] = xpos;
yc[1] = ypos + R_;
xc[2] = xpos - r_;
yc[2] = ypos + 0.5 * R_;
xc[3] = xpos - r_;
yc[3] = ypos - 0.5 * R_;
xc[4] = xpos;
yc[4] = ypos - R_;
xc[5] = xpos + r_;
yc[5] = ypos - 0.5 * R_;
const auto& rv = rLimits(zpos);
std::vector<int> fine, coarse;
for (unsigned int k = 0; k < HGCalParameters::k_CornerSize; ++k) {
double rpos = std::sqrt(xc[k] * xc[k] + yc[k] * yc[k]);
if (rpos <= rv.first)
fine.emplace_back(k);
else if (rpos <= rv.second)
coarse.emplace_back(k);
}
int type(-2);
double fracArea(0);
if (choice_ == 1) {
if (fine.size() >= cutValue_)
type = HGCSiliconDetId::HGCalHD120;
else if (coarse.size() >= cutValue_)
type = HGCSiliconDetId::HGCalLD200;
else
type = HGCSiliconDetId::HGCalLD300;
} else {
if (fine.size() >= 4)
type = HGCSiliconDetId::HGCalHD120;
else if (coarse.size() >= 4 && fine.size() <= 1)
type = HGCSiliconDetId::HGCalLD200;
else if (coarse.size() < 2 && fine.empty())
type = HGCSiliconDetId::HGCalLD300;
else if (!fine.empty())
type = HGCSiliconDetId::HGCalHD200;
if (type <= -1) {
unsigned int kmax = (type == -1) ? fine.size() : coarse.size();
std::vector<double> xcn, ycn;
for (unsigned int k = 0; k < kmax; ++k) {
unsigned int k1 = (type == -1) ? fine[k] : coarse[k];
unsigned int k2 = (k1 == xc.size() - 1) ? 0 : k1 + 1;
bool ok = ((type == -1) ? (std::find(fine.begin(), fine.end(), k2) != fine.end())
: (std::find(coarse.begin(), coarse.end(), k2) != coarse.end()));
xcn.emplace_back(xc[k1]);
ycn.emplace_back(yc[k1]);
if (!ok) {
double rr = (type == -1) ? rv.first : rv.second;
const auto& xy = intersection(k1, k2, xc, yc, xpos, ypos, rr);
xcn.emplace_back(xy.first);
ycn.emplace_back(xy.second);
}
}
fracArea = areaPolygon(xcn, ycn) / areaPolygon(xc, yc);
type = (fracArea > cutFracArea_) ? -(1 + type) : -type;
}
}
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "HGCalWaferType: position " << xpos << ":" << ypos << ":" << zpos << " R "
<< ":" << rv.first << ":" << rv.second << " corners|type " << fine.size() << ":"
<< coarse.size() << ":" << fracArea << ":" << type;
#endif
return type;
}
std::pair<double, double> HGCalWaferType::rLimits(double zpos) {
double zz = std::abs(zpos);
if (zz < zMin_)
zz = zMin_;
zz *= HGCalParameters::k_ScaleFromDDD;
double rfine = rad100_[0];
double rcoarse = rad200_[0];
for (int i = 1; i < 5; ++i) {
rfine *= zz;
rfine += rad100_[i];
rcoarse *= zz;
rcoarse += rad200_[i];
}
rfine *= HGCalParameters::k_ScaleToDDD;
rcoarse *= HGCalParameters::k_ScaleToDDD;
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "HGCalWaferType: Z " << zpos << ":" << zz << " R " << rfine << ":" << rcoarse;
#endif
return std::make_pair(rfine, rcoarse);
}
double HGCalWaferType::areaPolygon(std::vector<double> const& x, std::vector<double> const& y) {
double area = 0.0;
int n = static_cast<int>(x.size());
int j = n - 1;
for (int i = 0; i < n; ++i) {
area += ((x[j] + x[i]) * (y[i] - y[j]));
j = i;
}
return (0.5 * area);
}
std::pair<double, double> HGCalWaferType::intersection(
int k1, int k2, std::vector<double> const& x, std::vector<double> const& y, double xpos, double ypos, double rr) {
double slope = (x[k1] - x[k2]) / (y[k1] - y[k2]);
double interc = x[k1] - slope * y[k1];
double xx[2], yy[2], dist[2];
double v1 = std::sqrt((slope * slope + 1) * rr * rr - (interc * interc));
yy[0] = (-slope * interc + v1) / (1 + slope * slope);
yy[1] = (-slope * interc - v1) / (1 + slope * slope);
for (int i = 0; i < 2; ++i) {
xx[i] = (slope * yy[i] + interc);
dist[i] = ((xx[i] - xpos) * (xx[i] - xpos)) + ((yy[i] - ypos) * (yy[i] - ypos));
}
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HGCalGeom") << "HGCalWaferType: InterSection " << dist[0] << ":" << xx[0] << ":" << yy[0] << " vs "
<< dist[1] << ":" << xx[1] << ":" << yy[1];
#endif
if (dist[0] > dist[1])
return std::make_pair(xx[1], yy[1]);
else
return std::make_pair(xx[0], yy[0]);
}
|