1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
|
/////////////////////////////////////////////////////////////////////////////
// File: DDHCalBarrelAlgo.cc
// adapted from CCal(G4)HcalBarrel.cc
// Description: Geometry factory class for Hcal Barrel
///////////////////////////////////////////////////////////////////////////////
#include <cmath>
#include <algorithm>
#include <map>
#include <string>
#include <vector>
#include "DataFormats/Math/interface/angle_units.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "DetectorDescription/Core/interface/DDSplit.h"
#include "DetectorDescription/DDCMS/interface/DDPlugins.h"
#include "DetectorDescription/DDCMS/interface/DDutils.h"
#include "DD4hep/DetFactoryHelper.h"
//#define EDM_ML_DEBUG
using namespace angle_units::operators;
struct HcalBarrelAlgo {
//General Volume
// <----- Zmax ------>
//Router************************-------
// * *Rstep2| Theta angle w.r.t. vertical
// * *---------------
// * * |
// * *Theta[i] Rmax[i]
// * *--------------- |
// *Theta[0] Rmax[0]| |
//Rinner*****************----------------------
std::string genMaterial; //General material
int nsectors; //Number of potenital straight edges
int nsectortot; //Number of straight edges (actual)
int nhalf; //Number of half modules
double rinner, router; //See picture
int rzones; // ....
std::vector<double> theta; // .... (in degrees)
std::vector<double> rmax; // ....
std::vector<double> zoff; // ....
std::vector<double> ttheta; //tan(theta)
std::string rotHalf; //Rotation matrix of the second half
std::string rotns; //Name space for Rotation matrices
//Upper layers inside general volume
// <---- Zout ---->
// | **************** |
// | * * Wstep
// W * ***** |
// | * *
// | ********************
// <------ Zin ------->
// Middle layers inside general volume
// <------ Zout ------> Zout = Full sector Z at position
// | ******************** Zin = Full sector Z at position
// | * *
// W * * Angle = Theta sector
// | * * )
// | ****************--------
// <------ Zin ------->
// Lower layers
// <------ Zout ------> Zin(i)=Zout(i-1)
// | ******************** Zout(i)=Zin(i)+W(i)/tan(Theta(i))
// | * *
// W * * Theta
// | * *
// | ****************--------
// <--- Zin ------>
int nLayers; //Number of layers
std::vector<int> layerId; //Number identification
std::vector<std::string> layerLabel; //String identification
std::vector<std::string> layerMat; //Material
std::vector<double> layerWidth; //W in picture
std::vector<double> layerD1; //d1 in front picture
std::vector<double> layerD2; //d2 in front picture
std::vector<double> layerAlpha; //Angular width of the middle tiles
std::vector<double> layerT1; //t in front picture (side)
std::vector<double> layerT2; //t in front picture (front)
std::vector<int> layerAbsorb; //Absorber flag
std::vector<double> layerGap; //Gap at the edge
int nAbsorber; //Number of absorber layers in middle
std::vector<std::string> absorbName; //Absorber name
std::vector<std::string> absorbMat; //Absorber material
std::vector<double> absorbD; //Distance from the bottom surface
std::vector<double> absorbT; //Thickness
std::string middleMat; //Material of the detector layer
double middleD; //Distance from the bottom surface
double middleW; //Half width
int nMidAbs; //Number of absorbers in front part
std::vector<std::string> midName; //Absorber names in the front part
std::vector<std::string> midMat; //Absorber material
std::vector<double> midW; //Half width
std::vector<double> midT; //Thickness
std::vector<std::string> sideMat; //Material for special side layers
std::vector<double> sideD; //Depth from bottom surface
std::vector<double> sideT; //Thickness
int nSideAbs; //Number of absorbers in special side
std::vector<std::string> sideAbsName; //Absorber name
std::vector<std::string> sideAbsMat; //Absorber material
std::vector<double> sideAbsW; //Half width
// Detectors. Each volume inside the layer has the shape:
//
// ******************************* |
// *\\\\\\\Plastic\\\\\\\\\\\\\\\* T2
// ******************************* |
// *////Scintillator/////////////* Tsc
// ******************************* |
// *\\\\\\\Plastic\\\\\\\\\\\\\\\* T1
// ******************************* | |
// * Air * dP1
// ******************************* |
//
std::string detMat; //fill material
std::string detRot; //Rotation matrix for the 2nd
std::string detMatPl; //Plastic material
std::string detMatSc; //Scintillator material
std::vector<int> detType;
std::vector<double> detdP1; //Air gap (side)
std::vector<double> detdP2; //Air gap (centre)
std::vector<double> detT11; //Back plastic thickness (side)
std::vector<double> detT12; //Back plastic thickness (centre)
std::vector<double> detTsc; //Scintillator
std::vector<double> detT21; //Front plastic thickness (side)
std::vector<double> detT22; //Front plastic thickness (centre)
std::vector<double> detWidth1; //Width of phi(1,4) megatiles
std::vector<double> detWidth2; //Width of phi(2,3) megatiles
std::vector<int> detPosY; //Positioning of phi(1,4) tiles - 0 centre
std::string idName; //Name of the "parent" volume.
std::string idNameSpace; //Namespace of this and ALL sub-parts
int idOffset; // Geant4 ID's... = 3000;
HcalBarrelAlgo() = delete;
HcalBarrelAlgo(cms::DDParsingContext& ctxt, xml_h& e) {
cms::DDNamespace ns(ctxt, e, true);
cms::DDAlgoArguments args(ctxt, e);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: Creating an instance";
#endif
genMaterial = args.value<std::string>("MaterialName");
nsectors = args.value<int>("NSector");
nsectortot = args.value<int>("NSectorTot");
nhalf = args.value<int>("NHalf");
rinner = args.value<double>("RIn");
router = args.value<double>("ROut");
rzones = args.value<int>("RZones");
rotHalf = args.value<std::string>("RotHalf");
rotns = args.value<std::string>("RotNameSpace");
theta = args.value<std::vector<double> >("Theta");
rmax = args.value<std::vector<double> >("RMax");
zoff = args.value<std::vector<double> >("ZOff");
for (int i = 0; i < rzones; i++) {
ttheta.emplace_back(tan(theta[i])); //*deg already done in XML
}
if (rzones > 3)
rmax[2] = (zoff[3] - zoff[2]) / ttheta[2];
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: General material " << genMaterial << "\tSectors " << nsectors
<< ", " << nsectortot << "\tHalves " << nhalf << "\tRotation matrix " << rotns << ":"
<< rotHalf << "\n\t\t" << cms::convert2mm(rinner) << "\t" << cms::convert2mm(router)
<< "\t" << rzones;
for (int i = 0; i < rzones; i++)
edm::LogVerbatim("HCalGeom") << "\tTheta[" << i << "] = " << theta[i] << "\trmax[" << i
<< "] = " << cms::convert2mm(rmax[i]) << "\tzoff[" << i
<< "] = " << cms::convert2mm(zoff[i]);
#endif
///////////////////////////////////////////////////////////////
//Layers
nLayers = args.value<int>("NLayers");
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: Layer\t" << nLayers;
#endif
layerId = args.value<std::vector<int> >("Id");
layerLabel = args.value<std::vector<std::string> >("LayerLabel");
layerMat = args.value<std::vector<std::string> >("LayerMat");
layerWidth = args.value<std::vector<double> >("LayerWidth");
layerD1 = args.value<std::vector<double> >("D1");
layerD2 = args.value<std::vector<double> >("D2");
layerAlpha = args.value<std::vector<double> >("Alpha2");
layerT1 = args.value<std::vector<double> >("T1");
layerT2 = args.value<std::vector<double> >("T2");
layerAbsorb = args.value<std::vector<int> >("AbsL");
layerGap = args.value<std::vector<double> >("Gap");
#ifdef EDM_ML_DEBUG
for (int i = 0; i < nLayers; i++)
edm::LogVerbatim("HCalGeom") << layerLabel[i] << "\t" << layerId[i] << "\t" << layerMat[i] << "\t"
<< cms::convert2mm(layerWidth[i]) << "\t" << cms::convert2mm(layerD1[i]) << "\t"
<< cms::convert2mm(layerD2[i]) << "\t" << layerAlpha[i] << "\t"
<< cms::convert2mm(layerT1[i]) << "\t" << cms::convert2mm(layerT2[i]) << "\t"
<< layerAbsorb[i] << "\t" << cms::convert2mm(layerGap[i]);
#endif
///////////////////////////////////////////////////////////////
//Absorber Layers and middle part
absorbName = args.value<std::vector<std::string> >("AbsorbName");
absorbMat = args.value<std::vector<std::string> >("AbsorbMat");
absorbD = args.value<std::vector<double> >("AbsorbD");
absorbT = args.value<std::vector<double> >("AbsorbT");
nAbsorber = absorbName.size();
#ifdef EDM_ML_DEBUG
for (int i = 0; i < nAbsorber; i++)
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << absorbName[i] << " Material " << absorbMat[i] << " d "
<< cms::convert2mm(absorbD[i]) << " t " << cms::convert2mm(absorbT[i]);
#endif
middleMat = args.value<std::string>("MiddleMat");
middleD = args.value<double>("MiddleD");
middleW = args.value<double>("MiddleW");
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: Middle material " << middleMat << " d "
<< cms::convert2mm(middleD) << " w " << cms::convert2mm(middleW);
#endif
midName = args.value<std::vector<std::string> >("MidAbsName");
midMat = args.value<std::vector<std::string> >("MidAbsMat");
midW = args.value<std::vector<double> >("MidAbsW");
midT = args.value<std::vector<double> >("MidAbsT");
nMidAbs = midName.size();
#ifdef EDM_ML_DEBUG
for (int i = 0; i < nMidAbs; i++)
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << midName[i] << " Material " << midMat[i] << " W "
<< cms::convert2mm(midW[i]) << " T " << cms::convert2mm(midT[i]);
#endif
//Absorber layers in the side part
sideMat = args.value<std::vector<std::string> >("SideMat");
sideD = args.value<std::vector<double> >("SideD");
sideT = args.value<std::vector<double> >("SideT");
#ifdef EDM_ML_DEBUG
for (unsigned int i = 0; i < sideMat.size(); i++)
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: Side material " << sideMat[i] << " d "
<< cms::convert2mm(sideD[i]) << " t " << cms::convert2mm(sideT[i]);
#endif
sideAbsName = args.value<std::vector<std::string> >("SideAbsName");
sideAbsMat = args.value<std::vector<std::string> >("SideAbsMat");
sideAbsW = args.value<std::vector<double> >("SideAbsW");
nSideAbs = sideAbsName.size();
#ifdef EDM_ML_DEBUG
for (int i = 0; i < nSideAbs; i++)
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << sideAbsName[i] << " Material " << sideAbsMat[i] << " W "
<< cms::convert2mm(sideAbsW[i]);
#endif
///////////////////////////////////////////////////////////////
// Detectors
detMat = args.value<std::string>("DetMat");
detRot = args.value<std::string>("DetRot");
detMatPl = args.value<std::string>("DetMatPl");
detMatSc = args.value<std::string>("DetMatSc");
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: Detector (" << nLayers << ") Rotation matrix " << rotns << ":"
<< detRot << "\n\t\t" << detMat << "\t" << detMatPl << "\t" << detMatSc;
#endif
detType = args.value<std::vector<int> >("DetType");
detdP1 = args.value<std::vector<double> >("DetdP1");
detdP2 = args.value<std::vector<double> >("DetdP2");
detT11 = args.value<std::vector<double> >("DetT11");
detT12 = args.value<std::vector<double> >("DetT12");
detTsc = args.value<std::vector<double> >("DetTsc");
detT21 = args.value<std::vector<double> >("DetT21");
detT22 = args.value<std::vector<double> >("DetT22");
detWidth1 = args.value<std::vector<double> >("DetWidth1");
detWidth2 = args.value<std::vector<double> >("DetWidth2");
detPosY = args.value<std::vector<int> >("DetPosY");
#ifdef EDM_ML_DEBUG
for (int i = 0; i < nLayers; i++)
edm::LogVerbatim("HCalGeom") << i + 1 << "\t" << detType[i] << "\t" << cms::convert2mm(detdP1[i]) << ", "
<< cms::convert2mm(detdP2[i]) << "\t" << cms::convert2mm(detT11[i]) << ", "
<< cms::convert2mm(detT12[i]) << "\t" << cms::convert2mm(detTsc[i]) << "\t"
<< cms::convert2mm(detT21[i]) << ", " << cms::convert2mm(detT22[i]) << "\t"
<< cms::convert2mm(detWidth1[i]) << "\t" << cms::convert2mm(detWidth2[i]) << "\t"
<< detPosY[i];
#endif
// idName = parentName.name();
idName = args.value<std::string>("MotherName");
idNameSpace = ns.name();
idOffset = args.value<int>("IdOffset");
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: Parent " << args.parentName() << " idName " << idName
<< " NameSpace " << idNameSpace << " Offset " << idOffset;
edm::LogVerbatim("HCalGeom") << "==>> Constructing DDHCalBarrelAlgo...\n"
<< "DDHCalBarrelAlgo: General volume...";
#endif
double alpha = (1._pi) / nsectors;
double dphi = nsectortot * (2._pi) / nsectors;
int nsec, ntot(15);
if (nhalf == 1)
nsec = 8;
else
nsec = 15;
int nf = ntot - nsec;
//Calculate zmin... see HCalBarrel.hh picture. For polyhedra
//Rmin and Rmax are distances to vertex
double zmax = zoff[3];
double zstep5 = zoff[4];
double zstep4 = (zoff[1] + rmax[1] * ttheta[1]);
if ((zoff[2] + rmax[1] * ttheta[2]) > zstep4)
zstep4 = (zoff[2] + rmax[1] * ttheta[2]);
double zstep3 = (zoff[1] + rmax[0] * ttheta[1]);
double zstep2 = (zoff[0] + rmax[0] * ttheta[0]);
double zstep1 = (zoff[0] + rinner * ttheta[0]);
double rout = router;
double rout1 = rmax[3];
double rin = rinner;
double rmid1 = rmax[0];
double rmid2 = rmax[1];
double rmid3 = (zoff[4] - zoff[2]) / ttheta[2];
double rmid4 = rmax[2];
std::vector<double> pgonZ = {-zmax,
-zstep5,
-zstep5,
-zstep4,
-zstep3,
-zstep2,
-zstep1,
0,
zstep1,
zstep2,
zstep3,
zstep4,
zstep5,
zstep5,
zmax};
std::vector<double> pgonRmin = {
rmid4, rmid3, rmid3, rmid2, rmid1, rmid1, rin, rin, rin, rmid1, rmid1, rmid2, rmid3, rmid3, rmid4};
std::vector<double> pgonRmax = {
rout1, rout1, rout, rout, rout, rout, rout, rout, rout, rout, rout, rout, rout, rout1, rout1};
std::vector<double> pgonZHalf = {0, zstep1, zstep2, zstep3, zstep4, zstep5, zstep5, zmax};
std::vector<double> pgonRminHalf = {rin, rin, rmid1, rmid1, rmid2, rmid3, rmid3, rmid4};
std::vector<double> pgonRmaxHalf = {rout, rout, rout, rout, rout, rout, rout1, rout1};
std::string name("Null");
dd4hep::Solid solid;
if (nf == 0) {
solid = dd4hep::Polyhedra(ns.prepend(idName), nsectortot, -alpha, dphi, pgonZ, pgonRmin, pgonRmax);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << solid.name() << " Polyhedra made of " << genMaterial
<< " with " << nsectortot << " sectors from " << convertRadToDeg(-alpha) << " to "
<< convertRadToDeg(-alpha + dphi) << " and with " << nsec << " sections ";
for (unsigned int i = 0; i < pgonZ.size(); i++)
edm::LogVerbatim("HCalGeom") << "\t"
<< "\tZ = " << cms::convert2mm(pgonZ[i])
<< "\tRmin = " << cms::convert2mm(pgonRmin[i])
<< "\tRmax = " << cms::convert2mm(pgonRmax[i]);
#endif
} else {
solid = dd4hep::Polyhedra(ns.prepend(idName), nsectortot, -alpha, dphi, pgonZHalf, pgonRminHalf, pgonRmaxHalf);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << solid.name() << " Polyhedra made of " << genMaterial
<< " with " << nsectortot << " sectors from " << convertRadToDeg(-alpha) << " to "
<< convertRadToDeg(-alpha + dphi) << " and with " << nsec << " sections ";
for (unsigned int i = 0; i < pgonZHalf.size(); i++)
edm::LogVerbatim("HCalGeom") << "\t\tZ = " << cms::convert2mm(pgonZHalf[i])
<< "\tRmin = " << cms::convert2mm(pgonRminHalf[i])
<< "\tRmax = " << cms::convert2mm(pgonRmaxHalf[i]);
#endif
}
dd4hep::Material matter = ns.material(genMaterial);
dd4hep::Volume genlogic(solid.name(), solid, matter);
dd4hep::Volume parentName = ns.volume(args.parentName());
parentName.placeVolume(genlogic, 1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << genlogic.name() << " number 1 positioned in "
<< parentName.name() << " at (0, 0, 0) with no rotation";
#endif
//Forward and backwards halfs
name = idName + "Half";
nf = (ntot + 1) / 2;
solid = dd4hep::Polyhedra(ns.prepend(name), nsectortot, -alpha, dphi, pgonZHalf, pgonRminHalf, pgonRmaxHalf);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << solid.name() << " Polyhedra made of " << genMaterial
<< " with " << nsectortot << " sectors from " << convertRadToDeg(-alpha) << " to "
<< convertRadToDeg(-alpha + dphi) << " and with " << nf << " sections ";
for (unsigned int i = 0; i < pgonZHalf.size(); i++)
edm::LogVerbatim("HCalGeom") << "\t\tZ = " << cms::convert2mm(pgonZHalf[i])
<< "\tRmin = " << cms::convert2mm(pgonRminHalf[i])
<< "\tRmax = " << cms::convert2mm(pgonRmaxHalf[i]);
#endif
dd4hep::Volume genlogich(solid.name(), solid, matter);
genlogic.placeVolume(genlogich, 1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << genlogich.name() << " number 1 positioned in "
<< genlogic.name() << " at (0, 0, 0) with no rotation";
#endif
if (nhalf != 1) {
dd4hep::Rotation3D rot = getRotation(rotHalf, rotns, ns);
genlogic.placeVolume(genlogich, 2, rot);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << genlogich.name() << " number 2 positioned in "
<< genlogic.name() << " at (0, 0, 0) with " << rot;
#endif
} //end if (getNhalf...
//Construct sector (from -alpha to +alpha)
name = idName + "Module";
solid = dd4hep::Polyhedra(ns.prepend(name), 1, -alpha, 2 * alpha, pgonZHalf, pgonRminHalf, pgonRmaxHalf);
dd4hep::Volume seclogic(solid.name(), solid, matter);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << solid.name() << " Polyhedra made of " << matter.name()
<< " with 1 sector from " << convertRadToDeg(-alpha) << " to "
<< convertRadToDeg(alpha) << " and with " << nf << " sections";
for (unsigned int i = 0; i < pgonZHalf.size(); i++)
edm::LogVerbatim("HCalGeom") << "\t\tZ = " << cms::convert2mm(pgonZHalf[i])
<< "\tRmin = " << cms::convert2mm(pgonRminHalf[i])
<< "\tRmax = " << cms::convert2mm(pgonRmaxHalf[i]);
#endif
for (int ii = 0; ii < nsectortot; ii++) {
double phi = ii * 2 * alpha;
dd4hep::Rotation3D rotation;
if (phi != 0) {
rotation = dd4hep::RotationZ(phi);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: Creating a new "
<< "rotation around Z " << convertRadToDeg(phi);
#endif
} //if phideg!=0
genlogich.placeVolume(seclogic, ii + 1, rotation);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << seclogic.name() << " number " << ii + 1
<< " positioned in " << genlogich.name() << " at (0, 0, 0) with " << rotation;
#endif
}
//Construct the things inside the sector
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: Layers (" << nLayers << ") ...";
#endif
rin = rinner;
for (int i = 0; i < nLayers; i++) {
std::string name = idName + layerLabel[i];
dd4hep::Material matter = ns.material(layerMat[i]);
double width = layerWidth[i];
double rout = rin + width;
int in = 0, out = 0;
for (int j = 0; j < rzones - 1; j++) {
if (rin >= rmax[j])
in = j + 1;
if (rout > rmax[j])
out = j + 1;
}
double zout = zoff[in] + rin * ttheta[in];
//!!!!!!!!!!!!!!!!!Should be zero. And removed as soon as
//vertical walls are allowed in SolidPolyhedra
#ifdef EDM_ML_DEBUG
int nsec = 2;
#endif
std::vector<double> pgonZ, pgonRmin, pgonRmax;
// index 0
pgonZ.emplace_back(0);
pgonRmin.emplace_back(rin);
pgonRmax.emplace_back(rout);
// index 1
pgonZ.emplace_back(zout);
pgonRmin.emplace_back(rin);
pgonRmax.emplace_back(rout);
if (in == out) {
if (in <= 3) {
//index 2
pgonZ.emplace_back(zoff[in] + rout * ttheta[in]);
pgonRmin.emplace_back(pgonRmax[1]);
pgonRmax.emplace_back(pgonRmax[1]);
#ifdef EDM_ML_DEBUG
nsec++;
#endif
}
} else {
if (in == 3) {
//redo index 1, add index 2
pgonZ[1] = (zoff[out] + rmax[out] * ttheta[out]);
pgonZ.emplace_back(pgonZ[1]);
pgonRmin.emplace_back(pgonRmin[1]);
pgonRmax.emplace_back(rmax[in]);
//index 3
pgonZ.emplace_back(zoff[in] + rmax[in] * ttheta[in]);
pgonRmin.emplace_back(pgonRmin[2]);
pgonRmax.emplace_back(pgonRmax[2]);
#ifdef EDM_ML_DEBUG
nsec += 2;
#endif
} else {
//index 2
pgonZ.emplace_back(zoff[in] + rmax[in] * ttheta[in]);
pgonRmin.emplace_back(rmax[in]);
pgonRmax.emplace_back(pgonRmax[1]);
#ifdef EDM_ML_DEBUG
nsec++;
#endif
if (in == 0) {
pgonZ.emplace_back(zoff[out] + rmax[in] * ttheta[out]);
pgonRmin.emplace_back(pgonRmin[2]);
pgonRmax.emplace_back(pgonRmax[2]);
#ifdef EDM_ML_DEBUG
nsec++;
#endif
}
if (in <= 1) {
pgonZ.emplace_back(zoff[out] + rout * ttheta[out]);
pgonRmin.emplace_back(rout);
pgonRmax.emplace_back(rout);
#ifdef EDM_ML_DEBUG
nsec++;
#endif
}
}
}
//Solid & volume
dd4hep::Solid solid;
double alpha1 = alpha;
if (layerGap[i] > 1.e-6) {
double rmid = 0.5 * (rin + rout);
double width = rmid * tan(alpha) - layerGap[i];
alpha1 = atan(width / rmid);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "\tAlpha_1 modified from " << convertRadToDeg(alpha) << " to "
<< convertRadToDeg(alpha1) << " Rmid " << cms::convert2mm(rmid)
<< " Reduced width " << cms::convert2mm(width);
#endif
}
solid = dd4hep::Polyhedra(ns.prepend(name), 1, -alpha1, 2 * alpha1, pgonZ, pgonRmin, pgonRmax);
dd4hep::Volume glog(solid.name(), solid, matter);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << solid.name() << " (Layer " << i << ") Polyhedra made of "
<< matter.name() << " with 1 sector from " << convertRadToDeg(-alpha1) << " to "
<< convertRadToDeg(alpha1) << " and with " << nsec << " sections";
for (unsigned int k = 0; k < pgonZ.size(); k++)
edm::LogVerbatim("HCalGeom") << "\t\t" << cms::convert2mm(pgonZ[k]) << "\t" << cms::convert2mm(pgonRmin[k])
<< "\t" << cms::convert2mm(pgonRmax[k]);
#endif
seclogic.placeVolume(glog, layerId[i]);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << glog.name() << " number " << layerId[i]
<< " positioned in " << seclogic.name() << " at (0,0,0) with no rotation";
#endif
constructInsideLayers(glog,
layerLabel[i],
layerId[i],
layerAbsorb[i],
rin,
layerD1[i],
alpha1,
layerD2[i],
layerAlpha[i],
layerT1[i],
layerT2[i],
ns);
rin = rout;
}
}
void constructInsideLayers(dd4hep::Volume& laylog,
const std::string& nm,
int id,
int nAbs,
double rin,
double d1,
double alpha1,
double d2,
double alpha2,
double t1,
double t2,
cms::DDNamespace& ns) {
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: \t\tInside layer " << id << "...";
#endif
///////////////////////////////////////////////////////////////
//Pointers to the Rotation Matrices and to the Materials
dd4hep::Rotation3D rot = getRotation(detRot, rotns, ns);
std::string nam0 = nm + "In";
std::string name = idName + nam0;
dd4hep::Material matter = ns.material(detMat);
dd4hep::Solid solid;
dd4hep::Volume glog, mother;
double rsi, dx, dy, dz, x, y;
int i, in;
//Two lower volumes
if (alpha1 > 0) {
rsi = rin + d1;
in = 0;
for (i = 0; i < rzones - 1; i++) {
if (rsi >= rmax[i])
in = i + 1;
}
dx = 0.5 * t1;
dy = 0.5 * rsi * (tan(alpha1) - tan(alpha2));
dz = 0.5 * (zoff[in] + rsi * ttheta[in]);
x = rsi + dx;
y = 0.5 * rsi * (tan(alpha1) + tan(alpha2));
dd4hep::Position r11(x, y, dz);
dd4hep::Position r12(x, -y, dz);
solid = dd4hep::Box(ns.prepend(name + "1"), dx, dy, dz);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << solid.name() << " Box made of " << matter.name()
<< " of dimensions " << cms::convert2mm(dx) << ", " << cms::convert2mm(dy) << ", "
<< cms::convert2mm(dz);
#endif
glog = dd4hep::Volume(solid.name(), solid, matter);
if (nAbs != 0) {
mother = constructSideLayer(laylog, name, nAbs, rin, alpha1, ns);
} else {
mother = laylog;
}
mother.placeVolume(glog, idOffset + 1, r11);
mother.placeVolume(glog, idOffset + 2, dd4hep::Transform3D(rot, r12));
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << glog.name() << " Number " << (idOffset + 1)
<< " positioned in " << mother.name() << " at (" << cms::convert2mm(x) << ","
<< cms::convert2mm(y) << "," << cms::convert2mm(dz) << ") with no rotation\n"
<< "DDHCalBarrelAlgo: " << glog.name() << " Number " << (idOffset + 2)
<< " positioned in " << mother.name() << " at (" << cms::convert2mm(x) << ","
<< -cms::convert2mm(y) << "," << cms::convert2mm(dz) << ") with " << rot;
#endif
//Constructin the plastics and scintillators inside
constructInsideDetectors(glog, nam0 + "1", id, dx, dy, dz, 1, ns);
}
//Upper volume
rsi = rin + d2;
in = 0;
for (i = 0; i < rzones - 1; i++) {
if (rsi >= rmax[i])
in = i + 1;
}
dx = 0.5 * t2;
dy = 0.5 * rsi * tan(alpha2);
dz = 0.5 * (zoff[in] + rsi * ttheta[in]);
x = rsi + dx;
dd4hep::Position r21(x, dy, dz);
dd4hep::Position r22(x, -dy, dz);
solid = dd4hep::Box(ns.prepend(name + "2"), dx, dy, dz);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << solid.name() << " Box made of " << matter.name()
<< " of dimensions " << cms::convert2mm(dx) << ", " << cms::convert2mm(dy) << ", "
<< cms::convert2mm(dz);
#endif
glog = dd4hep::Volume(solid.name(), solid, matter);
if (nAbs < 0) {
mother = constructMidLayer(laylog, name, rin, alpha1, ns);
} else {
mother = laylog;
}
mother.placeVolume(glog, idOffset + 3, r21);
mother.placeVolume(glog, idOffset + 4, dd4hep::Transform3D(rot, r22));
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << glog.name() << " Number " << (idOffset + 3)
<< " positioned in " << mother.name() << " at (" << cms::convert2mm(x) << ","
<< cms::convert2mm(dy) << "," << cms::convert2mm(dz)
<< ") with no rotation\nDDHCalBarrelAlgo: " << glog.name() << " Number "
<< (idOffset + 4) << " positioned in " << mother.name() << " at ("
<< cms::convert2mm(x) << "," << -cms::convert2mm(dy) << "," << cms::convert2mm(dz)
<< ") with " << rot;
#endif
//Constructin the plastics and scintillators inside
constructInsideDetectors(glog, nam0 + "2", id, dx, dy, dz, 2, ns);
}
dd4hep::Volume constructSideLayer(
dd4hep::Volume& laylog, const std::string& nm, int nAbs, double rin, double alpha, cms::DDNamespace& ns) {
//Extra absorber layer
int k = abs(nAbs) - 1;
std::string namek = nm + "Side";
double rsi = rin + sideD[k];
int in = 0;
for (int i = 0; i < rzones - 1; i++) {
if (rsi >= rmax[i])
in = i + 1;
}
std::vector<double> pgonZ, pgonRmin, pgonRmax;
// index 0
pgonZ.emplace_back(0.0);
pgonRmin.emplace_back(rsi);
pgonRmax.emplace_back(rsi + sideT[k]);
// index 1
pgonZ.emplace_back(zoff[in] + rsi * ttheta[in]);
pgonRmin.emplace_back(rsi);
pgonRmax.emplace_back(pgonRmax[0]);
// index 2
pgonZ.emplace_back(zoff[in] + pgonRmax[0] * ttheta[in]);
pgonRmin.emplace_back(pgonRmax[1]);
pgonRmax.emplace_back(pgonRmax[1]);
dd4hep::Solid solid = dd4hep::Polyhedra(ns.prepend(namek), 1, -alpha, 2 * alpha, pgonZ, pgonRmin, pgonRmax);
dd4hep::Material matter = ns.material(sideMat[k]);
dd4hep::Volume glog(solid.name(), solid, matter);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << solid.name() << " Polyhedra made of " << sideMat[k]
<< " with 1 sector from " << convertRadToDeg(-alpha) << " to "
<< convertRadToDeg(alpha) << " and with " << pgonZ.size() << " sections";
for (unsigned int ii = 0; ii < pgonZ.size(); ii++)
edm::LogVerbatim("HCalGeom") << "\t\tZ = " << cms::convert2mm(pgonZ[ii])
<< "\tRmin = " << cms::convert2mm(pgonRmin[ii])
<< "\tRmax = " << cms::convert2mm(pgonRmax[ii]);
#endif
laylog.placeVolume(glog, 1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << glog.name() << " Number 1 positioned in " << laylog.name()
<< " at (0,0,0) with no rotation";
#endif
if (nAbs < 0) {
dd4hep::Volume mother = glog;
double rmid = pgonRmax[0];
for (int i = 0; i < nSideAbs; i++) {
double alpha1 = atan(sideAbsW[i] / rmid);
if (alpha1 > 0) {
std::string name = namek + sideAbsName[i];
solid = dd4hep::Polyhedra(ns.prepend(name), 1, -alpha1, 2 * alpha1, pgonZ, pgonRmin, pgonRmax);
dd4hep::Material matter = ns.material(sideAbsMat[i]);
dd4hep::Volume log(solid.name(), solid, matter);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << solid.name() << " Polyhedra made of " << sideAbsMat[i]
<< " with 1 sector from " << convertRadToDeg(-alpha1) << " to "
<< convertRadToDeg(alpha1) << " and with " << pgonZ.size() << " sections";
for (unsigned int ii = 0; ii < pgonZ.size(); ii++)
edm::LogVerbatim("HCalGeom") << "\t\tZ = " << cms::convert2mm(pgonZ[ii])
<< "\tRmin = " << cms::convert2mm(pgonRmin[ii])
<< "\tRmax = " << cms::convert2mm(pgonRmax[ii]);
#endif
mother.placeVolume(log, 1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << log.name() << " Number 1 positioned in "
<< mother.name() << " at (0,0,0) with no rotation";
#endif
mother = log;
}
}
}
return glog;
}
dd4hep::Volume constructMidLayer(
dd4hep::Volume laylog, const std::string& nm, double rin, double alpha, cms::DDNamespace& ns) {
dd4hep::Solid solid;
dd4hep::Volume log, glog;
std::string name = nm + "Mid";
for (int k = 0; k < nAbsorber; k++) {
std::string namek = name + absorbName[k];
double rsi = rin + absorbD[k];
int in = 0;
for (int i = 0; i < rzones - 1; i++) {
if (rsi >= rmax[i])
in = i + 1;
}
std::vector<double> pgonZ, pgonRmin, pgonRmax;
// index 0
pgonZ.emplace_back(0.0);
pgonRmin.emplace_back(rsi);
pgonRmax.emplace_back(rsi + absorbT[k]);
// index 1
pgonZ.emplace_back(zoff[in] + rsi * ttheta[in]);
pgonRmin.emplace_back(rsi);
pgonRmax.emplace_back(pgonRmax[0]);
// index 2
pgonZ.emplace_back(zoff[in] + pgonRmax[0] * ttheta[in]);
pgonRmin.emplace_back(pgonRmax[1]);
pgonRmax.emplace_back(pgonRmax[1]);
solid = dd4hep::Polyhedra(ns.prepend(namek), 1, -alpha, 2 * alpha, pgonZ, pgonRmin, pgonRmax);
dd4hep::Material matter = ns.material(absorbMat[k]);
log = dd4hep::Volume(solid.name(), solid, matter);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << solid.name() << " Polyhedra made of " << matter.name()
<< " with 1 sector from " << convertRadToDeg(-alpha) << " to "
<< convertRadToDeg(alpha) << " and with " << pgonZ.size() << " sections";
for (unsigned int ii = 0; ii < pgonZ.size(); ii++)
edm::LogVerbatim("HCalGeom") << "\t\tZ = " << cms::convert2mm(pgonZ[ii])
<< "\tRmin = " << cms::convert2mm(pgonRmin[ii])
<< "\tRmax = " << cms::convert2mm(pgonRmax[ii]);
#endif
laylog.placeVolume(log, 1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << log.name() << " Number 1 positioned in " << laylog.name()
<< " at (0,0,0) with no rotation";
#endif
if (k == 0) {
double rmin = pgonRmin[0];
double rmax = pgonRmax[0];
dd4hep::Volume mother = log;
for (int i = 0; i < 1; i++) {
double alpha1 = atan(midW[i] / rmin);
std::string namek = name + midName[i];
solid = dd4hep::Polyhedra(ns.prepend(namek), 1, -alpha1, 2 * alpha1, pgonZ, pgonRmin, pgonRmax);
dd4hep::Material matter1 = ns.material(midMat[i]);
log = dd4hep::Volume(solid.name(), solid, matter1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << solid.name() << " Polyhedra made of "
<< matter1.name() << " with 1 sector from " << convertRadToDeg(-alpha1) << " to "
<< convertRadToDeg(alpha1) << " and with " << pgonZ.size() << " sections";
for (unsigned int ii = 0; ii < pgonZ.size(); ii++)
edm::LogVerbatim("HCalGeom") << "\t\tZ = " << cms::convert2mm(pgonZ[ii])
<< "\tRmin = " << cms::convert2mm(pgonRmin[ii])
<< "\tRmax = " << cms::convert2mm(pgonRmax[ii]);
#endif
mother.placeVolume(log, 1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << log.name() << " Number 1 positioned in "
<< mother.name() << " at (0,0,0) with no rotation";
#endif
mother = log;
}
// Now the layer with detectors
double rmid = rmin + middleD;
pgonRmin[0] = rmid;
pgonRmax[0] = rmax;
pgonRmin[1] = rmid;
pgonRmax[1] = rmax;
pgonZ[1] = zoff[in] + rmid * ttheta[in];
pgonRmin[2] = rmax;
pgonRmax[2] = rmax;
pgonZ[2] = zoff[in] + rmax * ttheta[in];
double alpha1 = atan(middleW / rmin);
solid = dd4hep::Polyhedra(ns.prepend(name), 1, -alpha1, 2 * alpha1, pgonZ, pgonRmin, pgonRmax);
dd4hep::Material matter1 = ns.material(middleMat);
glog = dd4hep::Volume(solid.name(), solid, matter1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << solid.name() << " Polyhedra made of " << matter1.name()
<< " with 1 sector from " << convertRadToDeg(-alpha1) << " to "
<< convertRadToDeg(alpha1) << " and with " << pgonZ.size() << " sections";
for (unsigned int ii = 0; ii < pgonZ.size(); ii++)
edm::LogVerbatim("HCalGeom") << "\t\tZ = " << cms::convert2mm(pgonZ[ii])
<< "\tRmin = " << cms::convert2mm(pgonRmin[ii])
<< "\tRmax = " << cms::convert2mm(pgonRmax[ii]);
#endif
mother.placeVolume(glog, 1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << glog.name() << " Number 1 positioned in "
<< mother.name() << " at (0,0,0) with no rotation";
#endif
// Now the remaining absorber layers
for (int i = 1; i < nMidAbs; i++) {
namek = name + midName[i];
rmid = rmin + midT[i];
pgonRmin[0] = rmin;
pgonRmax[0] = rmid;
pgonRmin[1] = rmin;
pgonRmax[1] = rmid;
pgonZ[1] = zoff[in] + rmin * ttheta[in];
pgonRmin[2] = rmid;
pgonRmax[2] = rmid;
pgonZ[2] = zoff[in] + rmid * ttheta[in];
alpha1 = atan(midW[i] / rmin);
solid = dd4hep::Polyhedra(ns.prepend(namek), 1, -alpha1, 2 * alpha1, pgonZ, pgonRmin, pgonRmax);
dd4hep::Material matter2 = ns.material(midMat[i]);
log = dd4hep::Volume(solid.name(), solid, matter2);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << solid.name() << " Polyhedra made of "
<< matter2.name() << " with 1 sector from " << convertRadToDeg(-alpha1) << " to "
<< convertRadToDeg(alpha1) << " and with " << pgonZ.size() << " sections";
for (unsigned int ii = 0; ii < pgonZ.size(); ii++)
edm::LogVerbatim("HCalGeom") << "\t\tZ = " << cms::convert2mm(pgonZ[ii])
<< "\tRmin = " << cms::convert2mm(pgonRmin[ii])
<< "\tRmax = " << cms::convert2mm(pgonRmax[ii]);
#endif
mother.placeVolume(log, i);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << log.name() << " Number " << i << " positioned in "
<< mother.name() << " at (0,0,0) with no rotation";
#endif
mother = log;
}
}
}
return glog;
}
void constructInsideDetectors(dd4hep::Volume& detector,
const std::string& name,
int id,
double dx,
double dy,
double dz,
int type,
cms::DDNamespace& ns) {
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: \t\tInside detector " << id << "...";
#endif
dd4hep::Material plmatter = ns.material(detMatPl);
dd4hep::Material scmatter = ns.material(detMatSc);
std::string plname = DDSplit(detector.name()).first + "Plastic_";
std::string scname = idName + "Scintillator" + name;
id--;
dd4hep::Solid solid;
dd4hep::Volume glog;
double wid, y = 0;
double dx1, dx2, shiftX;
if (type == 1) {
wid = 0.5 * detWidth1[id];
dx1 = 0.5 * detT11[id];
dx2 = 0.5 * detT21[id];
shiftX = detdP1[id];
if (detPosY[id] > 0)
y = -dy + wid;
} else {
wid = 0.5 * detWidth2[id];
dx1 = 0.5 * detT12[id];
dx2 = 0.5 * detT22[id];
shiftX = detdP2[id];
}
solid = dd4hep::Box(ns.prepend(plname + "1"), dx1, wid, dz);
glog = dd4hep::Volume(solid.name(), solid, plmatter);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << solid.name() << " Box made of " << plmatter.name()
<< " of dimensions " << cms::convert2mm(dx1) << ", " << cms::convert2mm(wid) << ", "
<< cms::convert2mm(dz);
#endif
double x = shiftX + dx1 - dx;
detector.placeVolume(glog, 1, dd4hep::Position(x, y, 0));
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << glog.name() << " Number 1 positioned in " << detector.name()
<< " at (" << cms::convert2mm(x) << "," << cms::convert2mm(y)
<< ",0) with no rotation";
#endif
solid = dd4hep::Box(ns.prepend(scname), 0.5 * detTsc[id], wid, dz);
glog = dd4hep::Volume(solid.name(), solid, scmatter);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << solid.name() << " Box made of " << scmatter.name()
<< " of dimensions " << cms::convert2mm(0.5 * detTsc[id]) << ", "
<< cms::convert2mm(wid) << ", " << cms::convert2mm(dz);
#endif
x += dx1 + 0.5 * detTsc[id];
int copyNo = id * 10 + detType[id];
detector.placeVolume(glog, copyNo, dd4hep::Position(x, y, 0));
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << glog.name() << " Number " << copyNo << " positioned in "
<< detector.name() << " at (" << cms::convert2mm(x) << "," << cms::convert2mm(y)
<< ",0) with no rotation";
#endif
solid = dd4hep::Box(ns.prepend(plname + "2"), dx2, wid, dz);
glog = dd4hep::Volume(solid.name(), solid, plmatter);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << solid.name() << " Box made of " << plmatter.name()
<< " of dimensions " << cms::convert2mm(dx2) << ", " << cms::convert2mm(wid) << ", "
<< cms::convert2mm(dz);
#endif
x += 0.5 * detTsc[id] + dx2;
detector.placeVolume(glog, 1, dd4hep::Position(x, y, 0));
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalBarrelAlgo: " << glog.name() << " Number 1 positioned in " << detector.name()
<< " at (" << cms::convert2mm(x) << "," << cms::convert2mm(y)
<< ",0) with no rotation";
#endif
}
dd4hep::Rotation3D getRotation(std::string& rotation, std::string& rotns, cms::DDNamespace& ns) {
std::string rot = (strchr(rotation.c_str(), NAMESPACE_SEP) == nullptr) ? (rotns + ":" + rotation) : rotation;
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "getRotation: " << rotation << ":" << rot << ":" << ns.rotation(rot);
#endif
return ns.rotation(rot);
}
};
static long algorithm(dd4hep::Detector& /* description */, cms::DDParsingContext& ctxt, xml_h e) {
HcalBarrelAlgo hcalbarrelalgo(ctxt, e);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "<<== End of DDHCalBarrelAlgo construction";
#endif
return cms::s_executed;
}
// first argument is the type from the xml file
DECLARE_DDCMS_DETELEMENT(DDCMS_hcal_DDHCalBarrelAlgo, algorithm)
|