ddcms_det_element_DDCMS_hcal_DDHCalTBCableAlgo

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
#include "DataFormats/Math/interface/angle_units.h"
#include "DetectorDescription/DDCMS/interface/DDPlugins.h"
#include "DetectorDescription/DDCMS/interface/DDutils.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "DD4hep/DetFactoryHelper.h"

//#define EDM_ML_DEBUG
using namespace angle_units::operators;

static long algorithm(dd4hep::Detector& /* description */, cms::DDParsingContext& ctxt, xml_h e) {
  cms::DDNamespace ns(ctxt, e, true);
  cms::DDAlgoArguments args(ctxt, e);

  // Header section
  //     <---- Zout ---->
  //  |  ****************     |
  //  |  *              *     Wstep
  //  W  *              ***** |
  //  |  *                  *
  //  |  ********************
  //     <------ Zin ------->
  //     <------ Zout ------>         Zout = Full sector Z at position
  //  |  ********************         Zin  = Full sector Z at position
  //  |  *                 *
  //  W  *                * Angle = Theta sector
  //  |  *               *  )
  //  |  ****************--------
  //     <------ Zin ------->
  //     <------ Zout ------>         Zin(i)=Zout(i-1)
  //  |  ********************         Zout(i)=Zin(i)+W(i)/tan(Theta(i))
  //  |  *                 *
  //  W  *                *  Theta
  //  |  *               *
  //  |  ****************--------
  //     <--- Zin ------>
  std::string genMat = args.value<std::string>("MaterialName");           //General material
  int nsectors = args.value<int>("NSector");                              //Number of potenital straight edges
  int nsectortot = args.value<int>("NSectorTot");                         //Number of straight edges (actual)
  int nhalf = args.value<int>("NHalf");                                   //Number of half modules
  double rin = args.value<double>("RIn");                                 //(see Figure of hcalbarrel)
  std::vector<double> theta = args.value<std::vector<double> >("Theta");  //  .... (in degrees)
  std::vector<double> rmax = args.value<std::vector<double> >("RMax");    //  ....
  std::vector<double> zoff = args.value<std::vector<double> >("ZOff");    //  ....
  std::string absMat = args.value<std::string>("AbsMatName");             //Absorber material
  double thick = args.value<double>("Thickness");                         //Thickness of absorber
  double width1 = args.value<double>("Width1");                           //Width of absorber type 1
  double length1 = args.value<double>("Length1");                         //Length of absorber type 1
  double width2 = args.value<double>("Width2");                           //Width of absorber type 2
  double length2 = args.value<double>("Length2");                         //Length of absorber type 2
  double gap2 = args.value<double>("Gap2");                               //Gap between abosrbers of type 2
  std::string idName = args.value<std::string>("MotherName");             //Name of the "parent" volume.
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: General material " << genMat << "\tSectors " << nsectors << ", "
                               << nsectortot << "\tHalves " << nhalf << "\tRin " << cms::convert2mm(rin);
  for (unsigned int i = 0; i < theta.size(); i++)
    edm::LogVerbatim("HCalGeom") << "\t" << i << " Theta " << convertRadToDeg(theta[i]) << " rmax "
                                 << cms::convert2mm(rmax[i]) << " zoff " << cms::convert2mm(zoff[i]);
  edm::LogVerbatim("HCalGeom") << "\tCable mockup made of " << absMat << "\tThick " << cms::convert2mm(thick)
                               << "\tLength and width " << cms::convert2mm(length1) << ", " << cms::convert2mm(width1)
                               << " and " << cms::convert2mm(length2) << ", " << cms::convert2mm(width2) << " Gap "
                               << cms::convert2mm(gap2);
  edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: Parent " << args.parentName() << " idName " << idName
                               << " NameSpace " << ns.name() << " for solids";
#endif

  double alpha = 1._pi / nsectors;
  double dphi = nsectortot * 2._pi / nsectors;
  double zstep0 = zoff[1] + rmax[1] * tan(theta[1]) + (rin - rmax[1]) * tan(theta[2]);
  double zstep1 = zstep0 + thick / cos(theta[2]);
  double zstep2 = zoff[3];
  double rstep0 = rin + (zstep2 - zstep1) / tan(theta[2]);
  double rstep1 = rin + (zstep1 - zstep0) / tan(theta[2]);

  std::vector<double> pgonZ = {zstep0, zstep1, zstep2, zstep2 + thick / cos(theta[2])};
  std::vector<double> pgonRmin = {rin, rin, rstep0, rmax[2]};
  std::vector<double> pgonRmax = {rin, rstep1, rmax[2], rmax[2]};

  dd4hep::Solid solid = dd4hep::Polyhedra(ns.prepend(idName), nsectortot, -alpha, dphi, pgonZ, pgonRmin, pgonRmax);
  dd4hep::Material matter = ns.material(genMat);
  dd4hep::Volume genlogic(solid.name(), solid, matter);
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << solid.name() << " Polyhedra made of " << genMat << " with "
                               << nsectortot << " sectors from " << convertRadToDeg(-alpha) << " to "
                               << convertRadToDeg(-alpha + dphi) << " and with " << pgonZ.size() << " sections";
  for (unsigned int i = 0; i < pgonZ.size(); i++)
    edm::LogVerbatim("HCalGeom") << "\t\tZ = " << cms::convert2mm(pgonZ[i])
                                 << "\tRmin = " << cms::convert2mm(pgonRmin[i])
                                 << "\tRmax = " << cms::convert2mm(pgonRmax[i]);
#endif

  dd4hep::Volume parent = ns.volume(args.parentName());
  dd4hep::Rotation3D rot;
  parent.placeVolume(genlogic, 1);
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << genlogic.name() << " number 1 positioned in "
                               << parent.name() << " at (0, 0, 0) with no rotation";
#endif
  if (nhalf != 1) {
    rot = cms::makeRotation3D(90._deg, 180._deg, 90._deg, 90._deg, 180._deg, 0);
    parent.placeVolume(genlogic, 2, rot);
#ifdef EDM_ML_DEBUG
    edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << genlogic.name() << " number 2 positioned in "
                                 << parent.name() << " at (0, 0, 0) with rotation: " << rot;
#endif
  }

  //Construct sector (from -alpha to +alpha)
  std::string name = idName + "Module";
  solid = dd4hep::Polyhedra(ns.prepend(name), 1, -alpha, 2 * alpha, pgonZ, pgonRmin, pgonRmax);
  dd4hep::Volume seclogic(solid.name(), solid, matter);
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << solid.name() << " Polyhedra made of " << genMat
                               << " with 1 sector from " << convertRadToDeg(-alpha) << " to " << convertRadToDeg(alpha)
                               << " and with " << pgonZ.size() << " sections";
  for (unsigned int i = 0; i < pgonZ.size(); i++)
    edm::LogVerbatim("HCalGeom") << "\t\tZ = " << cms::convert2mm(pgonZ[i])
                                 << "\tRmin = " << cms::convert2mm(pgonRmin[i])
                                 << "\tRmax = " << cms::convert2mm(pgonRmax[i]);
#endif

  for (int ii = 0; ii < nsectortot; ++ii) {
    double phi = ii * 2 * alpha;
    dd4hep::Rotation3D rotation;
    if (phi != 0) {
      rotation = dd4hep::RotationZ(phi);
#ifdef EDM_ML_DEBUG
      edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: Creating a new rotation "
                                   << "\t90," << convertRadToDeg(phi) << ",90," << (90 + convertRadToDeg(phi))
                                   << ", 0, 0";
#endif
    }
    genlogic.placeVolume(seclogic, ii + 1, rotation);
#ifdef EDM_ML_DEBUG
    edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << seclogic.name() << " number " << ii + 1
                                 << " positioned in " << genlogic.name() << " at (0, 0, 0) with rotation: " << rotation;
#endif
  }

  //Now a trapezoid of air
  double rinl = pgonRmin[0] + thick * sin(theta[2]);
  double routl = pgonRmax[2] - thick * sin(theta[2]);
  double dx1 = rinl * tan(alpha);
  double dx2 = 0.90 * routl * tan(alpha);
  double dy = 0.50 * thick;
  double dz = 0.50 * (routl - rinl);
  name = idName + "Trap";
  solid = dd4hep::Trap(ns.prepend(name), dz, 0, 0, dy, dx1, dx1, 0, dy, dx2, dx2, 0);
  dd4hep::Volume glog(solid.name(), solid, matter);
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << solid.name() << " Trap made of " << genMat
                               << " of dimensions " << cms::convert2mm(dz) << ", 0, 0, " << cms::convert2mm(dy) << ", "
                               << cms::convert2mm(dx1) << ", " << cms::convert2mm(dx1) << ", 0, " << cms::convert2mm(dy)
                               << ", " << cms::convert2mm(dx2) << ", " << cms::convert2mm(dx2) << ", 0";
#endif

  rot = cms::makeRotation3D(90._deg, 270._deg, (180._deg - theta[2]), 0, (90._deg - theta[2]), 0);
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: Creating a rotation: \t90, 270, "
                               << (180 - convertRadToDeg(theta[2])) << ", 0, " << (90 - convertRadToDeg(theta[2]))
                               << ", 0";
#endif
  dd4hep::Position r1(0.5 * (rinl + routl), 0, 0.5 * (pgonZ[1] + pgonZ[2]));
  seclogic.placeVolume(glog, 1, dd4hep::Transform3D(rot, r1));
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << glog.name() << " number 1 positioned in " << seclogic.name()
                               << " at (" << cms::convert2mm(0.5 * (rinl + routl)) << ", 0, "
                               << cms::convert2mm(0.5 * (pgonZ[1] + pgonZ[2])) << " with rotation: " << rot;
#endif
  //Now the cable of type 1
  name = idName + "Cable1";
  double phi = atan((dx2 - dx1) / (2 * dz));
  double xmid = 0.5 * (dx1 + dx2) - 1.0;
  solid = dd4hep::Box(ns.prepend(name), 0.5 * width1, 0.5 * thick, 0.5 * length1);
  dd4hep::Material absmatter = ns.material(absMat);
  dd4hep::Volume cablog1(solid.name(), solid, absmatter);
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << solid.name() << " Box made of " << absMat << " of dimension "
                               << cms::convert2mm(0.5 * width1) << ", " << cms::convert2mm(0.5 * thick) << ", "
                               << cms::convert2mm(0.5 * length1);
#endif

  dd4hep::Rotation3D rot2 = cms::makeRotation3D((90._deg + phi), 0.0, 90._deg, 90._deg, phi, 0.0);
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: Creating a rotation \t" << (90 + convertRadToDeg(phi))
                               << ", 0, 90, 90, " << convertRadToDeg(phi) << ", 0";
#endif
  dd4hep::Position r2((xmid - 0.5 * width1 * cos(phi)), 0, 0);
  glog.placeVolume(cablog1, 1, dd4hep::Transform3D(rot2, r2));
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << cablog1.name() << " number 1 positioned in " << glog.name()
                               << " at (" << cms::convert2mm(xmid - 0.5 * width1 * cos(phi))
                               << ", 0, 0) with rotation: " << rot2;
#endif
  dd4hep::Rotation3D rot3 = cms::makeRotation3D((90._deg - phi), 0, 90._deg, 90._deg, -phi, 0);
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: Creating a rotation \t" << (90 - convertRadToDeg(phi))
                               << ", 0, 90, 90, " << convertRadToDeg(-phi) << ", 0";
#endif
  dd4hep::Position r3(-(xmid - 0.5 * width1 * cos(phi)), 0, 0);
  glog.placeVolume(cablog1, 2, dd4hep::Transform3D(rot3, r3));
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << cablog1.name() << " number 2 positioned in " << glog.name()
                               << " at (" << cms::convert2mm(xmid - 0.5 * width1 * cos(phi))
                               << ", 0, 0) with rotation: " << rot3;
#endif
  //Now the cable of type 2
  name = idName + "Cable2";
  solid = dd4hep::Box(ns.prepend(name), 0.5 * width2, 0.5 * thick, 0.5 * length2);
  dd4hep::Volume cablog2(solid.name(), solid, absmatter);
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << solid.name() << " Box made of " << absMat << " of dimension "
                               << cms::convert2mm(0.5 * width2) << ", " << cms::convert2mm(0.5 * thick) << ", "
                               << cms::convert2mm(0.5 * length2);
#endif

  glog.placeVolume(cablog2, 1, dd4hep::Position(0.5 * (width2 + gap2), 0, 0));
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << cablog2.name() << " number 1 positioned in " << glog.name()
                               << " at (" << cms::convert2mm(0.5 * (width2 + gap2)) << ", 0, 0) with no rotation";
#endif
  glog.placeVolume(cablog2, 2, dd4hep::Position(-0.5 * (width2 + gap2), 0, 0));
#ifdef EDM_ML_DEBUG
  edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << cablog2.name() << " number 2 positioned in " << glog.name()
                               << " at " << cms::convert2mm(-0.5 * (width2 + gap2)) << ", 0, 0) with no rotation";

  edm::LogVerbatim("HCalGeom") << "<<== End of DDHCalTBCableAlgo construction";
#endif

  return cms::s_executed;
}

// first argument is the type from the xml file
DECLARE_DDCMS_DETELEMENT(DDCMS_hcal_DDHCalTBCableAlgo, algorithm);