1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
#include "DataFormats/Math/interface/angle_units.h"
#include "DetectorDescription/DDCMS/interface/DDPlugins.h"
#include "DetectorDescription/DDCMS/interface/DDutils.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "DD4hep/DetFactoryHelper.h"
//#define EDM_ML_DEBUG
using namespace angle_units::operators;
static long algorithm(dd4hep::Detector& /* description */, cms::DDParsingContext& ctxt, xml_h e) {
cms::DDNamespace ns(ctxt, e, true);
cms::DDAlgoArguments args(ctxt, e);
// Header section
// <---- Zout ---->
// | **************** |
// | * * Wstep
// W * ***** |
// | * *
// | ********************
// <------ Zin ------->
// <------ Zout ------> Zout = Full sector Z at position
// | ******************** Zin = Full sector Z at position
// | * *
// W * * Angle = Theta sector
// | * * )
// | ****************--------
// <------ Zin ------->
// <------ Zout ------> Zin(i)=Zout(i-1)
// | ******************** Zout(i)=Zin(i)+W(i)/tan(Theta(i))
// | * *
// W * * Theta
// | * *
// | ****************--------
// <--- Zin ------>
std::string genMat = args.value<std::string>("MaterialName"); //General material
int nsectors = args.value<int>("NSector"); //Number of potenital straight edges
int nsectortot = args.value<int>("NSectorTot"); //Number of straight edges (actual)
int nhalf = args.value<int>("NHalf"); //Number of half modules
double rin = args.value<double>("RIn"); //(see Figure of hcalbarrel)
std::vector<double> theta = args.value<std::vector<double> >("Theta"); // .... (in degrees)
std::vector<double> rmax = args.value<std::vector<double> >("RMax"); // ....
std::vector<double> zoff = args.value<std::vector<double> >("ZOff"); // ....
std::string absMat = args.value<std::string>("AbsMatName"); //Absorber material
double thick = args.value<double>("Thickness"); //Thickness of absorber
double width1 = args.value<double>("Width1"); //Width of absorber type 1
double length1 = args.value<double>("Length1"); //Length of absorber type 1
double width2 = args.value<double>("Width2"); //Width of absorber type 2
double length2 = args.value<double>("Length2"); //Length of absorber type 2
double gap2 = args.value<double>("Gap2"); //Gap between abosrbers of type 2
std::string idName = args.value<std::string>("MotherName"); //Name of the "parent" volume.
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: General material " << genMat << "\tSectors " << nsectors << ", "
<< nsectortot << "\tHalves " << nhalf << "\tRin " << cms::convert2mm(rin);
for (unsigned int i = 0; i < theta.size(); i++)
edm::LogVerbatim("HCalGeom") << "\t" << i << " Theta " << convertRadToDeg(theta[i]) << " rmax "
<< cms::convert2mm(rmax[i]) << " zoff " << cms::convert2mm(zoff[i]);
edm::LogVerbatim("HCalGeom") << "\tCable mockup made of " << absMat << "\tThick " << cms::convert2mm(thick)
<< "\tLength and width " << cms::convert2mm(length1) << ", " << cms::convert2mm(width1)
<< " and " << cms::convert2mm(length2) << ", " << cms::convert2mm(width2) << " Gap "
<< cms::convert2mm(gap2);
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: Parent " << args.parentName() << " idName " << idName
<< " NameSpace " << ns.name() << " for solids";
#endif
double alpha = 1._pi / nsectors;
double dphi = nsectortot * 2._pi / nsectors;
double zstep0 = zoff[1] + rmax[1] * tan(theta[1]) + (rin - rmax[1]) * tan(theta[2]);
double zstep1 = zstep0 + thick / cos(theta[2]);
double zstep2 = zoff[3];
double rstep0 = rin + (zstep2 - zstep1) / tan(theta[2]);
double rstep1 = rin + (zstep1 - zstep0) / tan(theta[2]);
std::vector<double> pgonZ = {zstep0, zstep1, zstep2, zstep2 + thick / cos(theta[2])};
std::vector<double> pgonRmin = {rin, rin, rstep0, rmax[2]};
std::vector<double> pgonRmax = {rin, rstep1, rmax[2], rmax[2]};
dd4hep::Solid solid = dd4hep::Polyhedra(ns.prepend(idName), nsectortot, -alpha, dphi, pgonZ, pgonRmin, pgonRmax);
dd4hep::Material matter = ns.material(genMat);
dd4hep::Volume genlogic(solid.name(), solid, matter);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << solid.name() << " Polyhedra made of " << genMat << " with "
<< nsectortot << " sectors from " << convertRadToDeg(-alpha) << " to "
<< convertRadToDeg(-alpha + dphi) << " and with " << pgonZ.size() << " sections";
for (unsigned int i = 0; i < pgonZ.size(); i++)
edm::LogVerbatim("HCalGeom") << "\t\tZ = " << cms::convert2mm(pgonZ[i])
<< "\tRmin = " << cms::convert2mm(pgonRmin[i])
<< "\tRmax = " << cms::convert2mm(pgonRmax[i]);
#endif
dd4hep::Volume parent = ns.volume(args.parentName());
dd4hep::Rotation3D rot;
parent.placeVolume(genlogic, 1);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << genlogic.name() << " number 1 positioned in "
<< parent.name() << " at (0, 0, 0) with no rotation";
#endif
if (nhalf != 1) {
rot = cms::makeRotation3D(90._deg, 180._deg, 90._deg, 90._deg, 180._deg, 0);
parent.placeVolume(genlogic, 2, rot);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << genlogic.name() << " number 2 positioned in "
<< parent.name() << " at (0, 0, 0) with rotation: " << rot;
#endif
}
//Construct sector (from -alpha to +alpha)
std::string name = idName + "Module";
solid = dd4hep::Polyhedra(ns.prepend(name), 1, -alpha, 2 * alpha, pgonZ, pgonRmin, pgonRmax);
dd4hep::Volume seclogic(solid.name(), solid, matter);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << solid.name() << " Polyhedra made of " << genMat
<< " with 1 sector from " << convertRadToDeg(-alpha) << " to " << convertRadToDeg(alpha)
<< " and with " << pgonZ.size() << " sections";
for (unsigned int i = 0; i < pgonZ.size(); i++)
edm::LogVerbatim("HCalGeom") << "\t\tZ = " << cms::convert2mm(pgonZ[i])
<< "\tRmin = " << cms::convert2mm(pgonRmin[i])
<< "\tRmax = " << cms::convert2mm(pgonRmax[i]);
#endif
for (int ii = 0; ii < nsectortot; ++ii) {
double phi = ii * 2 * alpha;
dd4hep::Rotation3D rotation;
if (phi != 0) {
rotation = dd4hep::RotationZ(phi);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: Creating a new rotation "
<< "\t90," << convertRadToDeg(phi) << ",90," << (90 + convertRadToDeg(phi))
<< ", 0, 0";
#endif
}
genlogic.placeVolume(seclogic, ii + 1, rotation);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << seclogic.name() << " number " << ii + 1
<< " positioned in " << genlogic.name() << " at (0, 0, 0) with rotation: " << rotation;
#endif
}
//Now a trapezoid of air
double rinl = pgonRmin[0] + thick * sin(theta[2]);
double routl = pgonRmax[2] - thick * sin(theta[2]);
double dx1 = rinl * tan(alpha);
double dx2 = 0.90 * routl * tan(alpha);
double dy = 0.50 * thick;
double dz = 0.50 * (routl - rinl);
name = idName + "Trap";
solid = dd4hep::Trap(ns.prepend(name), dz, 0, 0, dy, dx1, dx1, 0, dy, dx2, dx2, 0);
dd4hep::Volume glog(solid.name(), solid, matter);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << solid.name() << " Trap made of " << genMat
<< " of dimensions " << cms::convert2mm(dz) << ", 0, 0, " << cms::convert2mm(dy) << ", "
<< cms::convert2mm(dx1) << ", " << cms::convert2mm(dx1) << ", 0, " << cms::convert2mm(dy)
<< ", " << cms::convert2mm(dx2) << ", " << cms::convert2mm(dx2) << ", 0";
#endif
rot = cms::makeRotation3D(90._deg, 270._deg, (180._deg - theta[2]), 0, (90._deg - theta[2]), 0);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: Creating a rotation: \t90, 270, "
<< (180 - convertRadToDeg(theta[2])) << ", 0, " << (90 - convertRadToDeg(theta[2]))
<< ", 0";
#endif
dd4hep::Position r1(0.5 * (rinl + routl), 0, 0.5 * (pgonZ[1] + pgonZ[2]));
seclogic.placeVolume(glog, 1, dd4hep::Transform3D(rot, r1));
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << glog.name() << " number 1 positioned in " << seclogic.name()
<< " at (" << cms::convert2mm(0.5 * (rinl + routl)) << ", 0, "
<< cms::convert2mm(0.5 * (pgonZ[1] + pgonZ[2])) << " with rotation: " << rot;
#endif
//Now the cable of type 1
name = idName + "Cable1";
double phi = atan((dx2 - dx1) / (2 * dz));
double xmid = 0.5 * (dx1 + dx2) - 1.0;
solid = dd4hep::Box(ns.prepend(name), 0.5 * width1, 0.5 * thick, 0.5 * length1);
dd4hep::Material absmatter = ns.material(absMat);
dd4hep::Volume cablog1(solid.name(), solid, absmatter);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << solid.name() << " Box made of " << absMat << " of dimension "
<< cms::convert2mm(0.5 * width1) << ", " << cms::convert2mm(0.5 * thick) << ", "
<< cms::convert2mm(0.5 * length1);
#endif
dd4hep::Rotation3D rot2 = cms::makeRotation3D((90._deg + phi), 0.0, 90._deg, 90._deg, phi, 0.0);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: Creating a rotation \t" << (90 + convertRadToDeg(phi))
<< ", 0, 90, 90, " << convertRadToDeg(phi) << ", 0";
#endif
dd4hep::Position r2((xmid - 0.5 * width1 * cos(phi)), 0, 0);
glog.placeVolume(cablog1, 1, dd4hep::Transform3D(rot2, r2));
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << cablog1.name() << " number 1 positioned in " << glog.name()
<< " at (" << cms::convert2mm(xmid - 0.5 * width1 * cos(phi))
<< ", 0, 0) with rotation: " << rot2;
#endif
dd4hep::Rotation3D rot3 = cms::makeRotation3D((90._deg - phi), 0, 90._deg, 90._deg, -phi, 0);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: Creating a rotation \t" << (90 - convertRadToDeg(phi))
<< ", 0, 90, 90, " << convertRadToDeg(-phi) << ", 0";
#endif
dd4hep::Position r3(-(xmid - 0.5 * width1 * cos(phi)), 0, 0);
glog.placeVolume(cablog1, 2, dd4hep::Transform3D(rot3, r3));
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << cablog1.name() << " number 2 positioned in " << glog.name()
<< " at (" << cms::convert2mm(xmid - 0.5 * width1 * cos(phi))
<< ", 0, 0) with rotation: " << rot3;
#endif
//Now the cable of type 2
name = idName + "Cable2";
solid = dd4hep::Box(ns.prepend(name), 0.5 * width2, 0.5 * thick, 0.5 * length2);
dd4hep::Volume cablog2(solid.name(), solid, absmatter);
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << solid.name() << " Box made of " << absMat << " of dimension "
<< cms::convert2mm(0.5 * width2) << ", " << cms::convert2mm(0.5 * thick) << ", "
<< cms::convert2mm(0.5 * length2);
#endif
glog.placeVolume(cablog2, 1, dd4hep::Position(0.5 * (width2 + gap2), 0, 0));
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << cablog2.name() << " number 1 positioned in " << glog.name()
<< " at (" << cms::convert2mm(0.5 * (width2 + gap2)) << ", 0, 0) with no rotation";
#endif
glog.placeVolume(cablog2, 2, dd4hep::Position(-0.5 * (width2 + gap2), 0, 0));
#ifdef EDM_ML_DEBUG
edm::LogVerbatim("HCalGeom") << "DDHCalTBCableAlgo: " << cablog2.name() << " number 2 positioned in " << glog.name()
<< " at " << cms::convert2mm(-0.5 * (width2 + gap2)) << ", 0, 0) with no rotation";
edm::LogVerbatim("HCalGeom") << "<<== End of DDHCalTBCableAlgo construction";
#endif
return cms::s_executed;
}
// first argument is the type from the xml file
DECLARE_DDCMS_DETELEMENT(DDCMS_hcal_DDHCalTBCableAlgo, algorithm);
|