ddcms_det_element_DDCMS_track_DDTIBLayerAlgo

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
#include "DD4hep/DetFactoryHelper.h"
#include <DD4hep/DD4hepUnits.h>
#include "DataFormats/Math/interface/angle_units.h"
#include "DetectorDescription/DDCMS/interface/DDPlugins.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"

using namespace std;
using namespace dd4hep;
using namespace cms;
using namespace angle_units::operators;

static long algorithm(Detector& /* description */, cms::DDParsingContext& context, xml_h element) {
  using VecDouble = vector<double>;

  cms::DDNamespace ns(context, element, true);
  DDAlgoArguments args(context, element);

  string mother = args.parentName();
  string genMat = args.str("GeneralMaterial");      //General material name
  double detectorTilt = args.dble("DetectorTilt");  //Detector Tilt
  double layerL = args.dble("LayerL");              //Length of the layer

  double radiusLo = args.dble("RadiusLo");          //Radius for detector at lower level
  int stringsLo = args.integer("StringsLo");        //Number of strings      ......
  string detectorLo = args.str("StringDetLoName");  //Detector string name   ......

  double radiusUp = args.dble("RadiusUp");          //Radius for detector at upper level
  int stringsUp = args.integer("StringsUp");        //Number of strings      ......
  string detectorUp = args.str("StringDetUpName");  //Detector string name   ......

  double cylinderT = args.dble("CylinderThickness");      //Cylinder thickness
  double cylinderInR = args.dble("CylinderInnerRadius");  //Cylinder inner radius
  string cylinderMat = args.str("CylinderMaterial");      //Cylinder material
  double MFRingInR = args.dble("MFRingInnerRadius");      //Inner Manifold Ring Inner Radius
  double MFRingOutR = args.dble("MFRingOuterRadius");     //Outer Manifold Ring Outer Radius
  double MFRingT = args.dble("MFRingThickness");          //Manifold Ring Thickness
  double MFRingDz = args.dble("MFRingDeltaz");            //Manifold Ring Half Lenght
  string MFIntRingMat = args.str("MFIntRingMaterial");    //Manifold Ring Material
  string MFExtRingMat = args.str("MFExtRingMaterial");    //Manifold Ring Material

  double supportT = args.dble("SupportThickness");  //Cylinder barrel CF skin thickness

  string centMat = args.str("CentRingMaterial");       //Central rings  material
  VecDouble centRing1par = args.vecDble("CentRing1");  //Central rings parameters
  VecDouble centRing2par = args.vecDble("CentRing2");  //Central rings parameters

  string fillerMat = args.str("FillerMaterial");  //Filler material
  double fillerDz = args.dble("FillerDeltaz");    //Filler Half Length

  string ribMat = args.str("RibMaterial");    //Rib material
  VecDouble ribW = args.vecDble("RibWidth");  //Rib width
  VecDouble ribPhi = args.vecDble("RibPhi");  //Rib Phi position

  VecDouble dohmListFW = args.vecDble("DOHMListFW");  //DOHM/AUX positions in #strings FW
  VecDouble dohmListBW = args.vecDble("DOHMListBW");  //DOHM/AUX positions in #strings BW

  double dohmtoMF = args.dble("DOHMtoMFDist");                   //DOHM Distance to MF
  double dohmCarrierPhiOff = args.dble("DOHMCarrierPhiOffset");  //DOHM Carrier Phi offset wrt horizontal
  string dohmPrimName = args.str("StringDOHMPrimName");          //DOHM Primary Logical Volume name
  string dohmAuxName = args.str("StringDOHMAuxName");            //DOHM Auxiliary Logical Volume name

  string dohmCarrierMaterial = args.str("DOHMCarrierMaterial");  //DOHM Carrier Material
  string dohmCableMaterial = args.str("DOHMCableMaterial");      //DOHM Cable Material
  double dohmPrimL = args.dble("DOHMPRIMLength");                //DOHM PRIMary Length
  string dohmPrimMaterial = args.str("DOHMPRIMMaterial");        //DOHM PRIMary Material
  double dohmAuxL = args.dble("DOHMAUXLength");                  //DOHM AUXiliary Length
  string dohmAuxMaterial = args.str("DOHMAUXMaterial");          //DOHM AUXiliary Material

  string pillarMaterial = args.str("PillarMaterial");  //Pillar Material

  double fwIntPillarDz = args.dble("FWIntPillarDz");  //Internal pillar parameters
  double fwIntPillarDPhi = args.dble("FWIntPillarDPhi");
  VecDouble fwIntPillarZ = args.vecDble("FWIntPillarZ");
  VecDouble fwIntPillarPhi = args.vecDble("FWIntPillarPhi");
  double bwIntPillarDz = args.dble("BWIntPillarDz");
  double bwIntPillarDPhi = args.dble("BWIntPillarDPhi");
  VecDouble bwIntPillarZ = args.vecDble("BWIntPillarZ");
  VecDouble bwIntPillarPhi = args.vecDble("BWIntPillarPhi");

  double fwExtPillarDz = args.dble("FWExtPillarDz");  //External pillar parameters
  double fwExtPillarDPhi = args.dble("FWExtPillarDPhi");
  VecDouble fwExtPillarZ = args.vecDble("FWExtPillarZ");
  VecDouble fwExtPillarPhi = args.vecDble("FWExtPillarPhi");
  double bwExtPillarDz = args.dble("BWExtPillarDz");
  double bwExtPillarDPhi = args.dble("BWExtPillarDPhi");
  VecDouble bwExtPillarZ = args.vecDble("BWExtPillarZ");
  VecDouble bwExtPillarPhi = args.vecDble("BWExtPillarPhi");

  dd4hep::PlacedVolume pv;

  auto LogPosition = [](dd4hep::PlacedVolume pvl) {
    edm::LogVerbatim("TIBGeom") << "DDTIBLayerAlgo: " << pvl.volume()->GetName()
                                << " positioned: " << pvl.motherVol()->GetName() << " " << pvl.position();
  };

  edm::LogVerbatim("TIBGeom") << "Parent " << mother << " NameSpace " << ns.name() << " General Material " << genMat;
  edm::LogVerbatim("TIBGeom") << "Lower layer Radius " << radiusLo << " Number " << stringsLo << " String "
                              << detectorLo;
  edm::LogVerbatim("TIBGeom") << "Upper layer Radius " << radiusUp << " Number " << stringsUp << " String "
                              << detectorUp;
  edm::LogVerbatim("TIBGeom") << "Cylinder Material/thickness " << cylinderMat << " " << cylinderT << " Rib Material "
                              << ribMat << " at " << ribW.size() << " positions with width/phi";
  for (unsigned int i = 0; i < ribW.size(); i++) {
    edm::LogVerbatim("TIBGeom") << "\tribW[" << i << "] = " << ribW[i] << "\tribPhi[" << i
                                << "] = " << convertRadToDeg(ribPhi[i]);
  }
  edm::LogVerbatim("TIBGeom") << "DOHM Primary "
                              << " Material " << dohmPrimMaterial << " Length " << dohmPrimL;
  edm::LogVerbatim("TIBGeom") << "DOHM Aux     "
                              << " Material " << dohmAuxMaterial << " Length " << dohmAuxL;
  for (double i : dohmListFW) {
    if (i > 0.)
      edm::LogVerbatim("TIBGeom") << "DOHM Primary at FW Position " << i;
    if (i < 0.)
      edm::LogVerbatim("TIBGeom") << "DOHM Aux     at FW Position " << -i;
  }
  for (double i : dohmListBW) {
    if (i > 0.)
      edm::LogVerbatim("TIBGeom") << "DOHM Primary at BW Position " << i;
    if (i < 0.)
      edm::LogVerbatim("TIBGeom") << "DOHM Aux     at BW Position " << -i;
  }
  edm::LogVerbatim("TIBGeom") << "FW Internal Pillar [Dz, DPhi] " << fwIntPillarDz << ", " << fwIntPillarDPhi;
  for (unsigned int i = 0; i < fwIntPillarZ.size(); i++) {
    if (fwIntPillarPhi[i] > 0.) {
      edm::LogVerbatim("TIBGeom") << " at positions [z, phi] " << fwIntPillarZ[i] << " " << fwIntPillarPhi[i];
    }
  }
  edm::LogVerbatim("TIBGeom") << "BW Internal Pillar [Dz, DPhi] " << bwIntPillarDz << ", " << bwIntPillarDPhi;
  for (unsigned int i = 0; i < bwIntPillarZ.size(); i++) {
    if (bwIntPillarPhi[i] > 0.) {
      edm::LogVerbatim("TIBGeom") << " at positions [z, phi] " << bwIntPillarZ[i] << " " << bwIntPillarPhi[i];
    }
  }
  edm::LogVerbatim("TIBGeom") << "FW External Pillar [Dz, DPhi] " << fwExtPillarDz << ", " << fwExtPillarDPhi;
  for (unsigned int i = 0; i < fwExtPillarZ.size(); i++) {
    if (fwExtPillarPhi[i] > 0.) {
      edm::LogVerbatim("TIBGeom") << " at positions [z, phi] " << fwExtPillarZ[i] << " " << fwExtPillarPhi[i];
    }
  }
  edm::LogVerbatim("TIBGeom") << "BW External Pillar [Dz, DPhi] " << bwExtPillarDz << ", " << bwExtPillarDPhi;
  for (unsigned int i = 0; i < bwExtPillarZ.size(); i++) {
    if (bwExtPillarPhi[i] > 0.) {
      edm::LogVerbatim("TIBGeom") << " at positions [z, phi] " << bwExtPillarZ[i] << " " << bwExtPillarPhi[i];
    }
  }

  const string& idName = mother;
  double rmin = MFRingInR;
  double rmax = MFRingOutR;
  Solid solid = ns.addSolidNS(ns.prepend(idName), Tube(rmin, rmax, 0.5 * layerL));
  edm::LogVerbatim("TIBGeom") << solid.name() << " Tubs made of " << genMat << " from 0 to " << convertRadToDeg(2_pi)
                              << " with Rin " << rmin << " Rout " << rmax << " ZHalf " << 0.5 * layerL;
  Volume layer = ns.addVolumeNS(Volume(ns.prepend(idName), solid, ns.material(genMat)));

  //Internal layer first
  double rin = rmin + MFRingT;
  //  double rout = 0.5*(radiusLo+radiusUp-cylinderT);
  double rout = cylinderInR;
  string name = idName + "Down";
  solid = ns.addSolidNS(ns.prepend(name), Tube(rin, rout, 0.5 * layerL));
  edm::LogVerbatim("TIBGeom") << solid.name() << " Tubs made of " << genMat << " from 0 to " << convertRadToDeg(2_pi)
                              << " with Rin " << rin << " Rout " << rout << " ZHalf " << 0.5 * layerL;
  Volume layerIn = ns.addVolumeNS(Volume(ns.prepend(name), solid, ns.material(genMat)));
  pv = layer.placeVolume(layerIn, 1);
  LogPosition(pv);

  double rposdet = radiusLo;
  double dphi = 2_pi / stringsLo;
  Volume detIn = ns.volume(detectorLo);
  for (int n = 0; n < stringsLo; n++) {
    double phi = (n + 0.5) * dphi;
    double phix = phi - detectorTilt + 90_deg;
    double theta = 90_deg;
    double phiy = phix + 90._deg;
    Rotation3D rotation = makeRotation3D(theta, phix, theta, phiy, 0., 0.);
    Position trdet(rposdet * cos(phi), rposdet * sin(phi), 0);
    pv = layerIn.placeVolume(detIn, n + 1, Transform3D(rotation, trdet));
    LogPosition(pv);
  }
  //Now the external layer
  rin = cylinderInR + cylinderT;
  rout = rmax - MFRingT;
  name = idName + "Up";
  solid = ns.addSolidNS(ns.prepend(name), Tube(rin, rout, 0.5 * layerL));
  edm::LogVerbatim("TIBGeom") << solid.name() << " Tubs made of " << genMat << " from 0 to " << convertRadToDeg(2_pi)
                              << " with Rin " << rin << " Rout " << rout << " ZHalf " << 0.5 * layerL;
  Volume layerOut = ns.addVolumeNS(Volume(ns.prepend(name), solid, ns.material(genMat)));
  pv = layer.placeVolume(layerOut, 1);
  LogPosition(pv);

  rposdet = radiusUp;
  dphi = 2_pi / stringsUp;
  Volume detOut = ns.volume(detectorUp);
  for (int n = 0; n < stringsUp; n++) {
    double phi = (n + 0.5) * dphi;
    double phix = phi - detectorTilt - 90_deg;
    double theta = 90_deg;
    double phiy = phix + 90._deg;
    Rotation3D rotation = makeRotation3D(theta, phix, theta, phiy, 0., 0.);
    Position trdet(rposdet * cos(phi), rposdet * sin(phi), 0);
    pv = layerOut.placeVolume(detOut, n + 1, Transform3D(rotation, trdet));
    LogPosition(pv);
  }

  //
  // Inner cylinder, support wall and ribs
  //
  // External skins
  rin = cylinderInR;
  rout = cylinderInR + cylinderT;
  name = idName + "Cylinder";
  solid = ns.addSolidNS(ns.prepend(name), Tube(rin, rout, 0.5 * layerL));
  edm::LogVerbatim("TIBGeom") << solid.name() << " Tubs made of " << cylinderMat << " from 0 to "
                              << convertRadToDeg(2_pi) << " with Rin " << rin << " Rout " << rout << " ZHalf "
                              << 0.5 * layerL;
  Volume cylinder = ns.addVolumeNS(Volume(ns.prepend(name), solid, ns.material(cylinderMat)));
  pv = layer.placeVolume(cylinder, 1);
  LogPosition(pv);

  //
  // inner part of the cylinder
  //
  rin += supportT;
  rout -= supportT;
  name = idName + "CylinderIn";
  solid = ns.addSolidNS(ns.prepend(name), Tube(rin, rout, 0.5 * layerL));
  edm::LogVerbatim("TIBGeom") << solid.name() << " Tubs made of " << genMat << " from 0 to " << convertRadToDeg(2_pi)
                              << " with Rin " << rin << " Rout " << rout << " ZHalf " << 0.5 * layerL;
  Volume cylinderIn = ns.addVolumeNS(Volume(ns.prepend(name), solid, ns.material(genMat)));
  pv = cylinder.placeVolume(cylinderIn, 1);
  LogPosition(pv);

  //
  // Filler Rings
  //
  name = idName + "Filler";
  solid = ns.addSolidNS(ns.prepend(name), Tube(rin, rout, fillerDz));
  edm::LogVerbatim("TIBGeom") << solid.name() << " Tubs made of " << fillerMat << " from " << 0. << " to "
                              << convertRadToDeg(2_pi) << " with Rin " << rin << " Rout " << rout << " ZHalf "
                              << fillerDz;
  Volume cylinderFiller = ns.addVolumeNS(Volume(ns.prepend(name), solid, ns.material(fillerMat)));
  pv = cylinderIn.placeVolume(cylinderFiller, 1, Position(0.0, 0.0, 0.5 * layerL - fillerDz));
  LogPosition(pv);

  pv = cylinderIn.placeVolume(cylinderFiller, 2, Position(0.0, 0.0, -0.5 * layerL + fillerDz));
  LogPosition(pv);

  //
  // Ribs
  //
  Material matrib = ns.material(ribMat);
  for (size_t i = 0; i < ribW.size(); i++) {
    name = idName + "Rib" + std::to_string(i);
    double width = 2. * ribW[i] / (rin + rout);
    double dz = 0.5 * layerL - 2. * fillerDz;
    double _rmi = std::min(rin + 0.5 * dd4hep::mm, rout - 0.5 * dd4hep::mm);
    double _rma = std::max(rin + 0.5 * dd4hep::mm, rout - 0.5 * dd4hep::mm);
    solid = ns.addSolidNS(ns.prepend(name), Tube(_rmi, _rma, dz, -0.5 * width, 0.5 * width));
    edm::LogVerbatim("TIBGeom") << solid.name() << " Tubs made of " << ribMat << " from "
                                << -0.5 * convertRadToDeg(width) << " to " << 0.5 * convertRadToDeg(width)
                                << " with Rin " << rin + 0.5 * dd4hep::mm << " Rout " << rout - 0.5 * dd4hep::mm
                                << " ZHalf " << dz;
    Volume cylinderRib = ns.addVolumeNS(Volume(ns.prepend(name), solid, matrib));
    double phix = ribPhi[i];
    double theta = 90_deg;
    double phiy = phix + 90._deg;
    Rotation3D rotation = makeRotation3D(theta, phix, theta, phiy, 0., 0.);
    Position tran(0, 0, 0);
    pv = cylinderIn.placeVolume(cylinderRib, 1, Transform3D(rotation, tran));
    LogPosition(pv);
  }

  //
  //Manifold rings
  //
  // Inner ones first
  rin = MFRingInR;
  rout = rin + MFRingT;
  name = idName + "InnerMFRing";
  solid = ns.addSolidNS(ns.prepend(name), Tube(rin, rout, MFRingDz));
  edm::LogVerbatim("TIBGeom") << solid.name() << " Tubs made of " << MFIntRingMat << " from 0 to "
                              << convertRadToDeg(2_pi) << " with Rin " << rin << " Rout " << rout << " ZHalf "
                              << MFRingDz;

  Volume inmfr = ns.addVolumeNS(Volume(ns.prepend(name), solid, ns.material(MFIntRingMat)));

  pv = layer.placeVolume(inmfr, 1, Position(0.0, 0.0, -0.5 * layerL + MFRingDz));
  LogPosition(pv);

  pv = layer.placeVolume(inmfr, 2, Position(0.0, 0.0, +0.5 * layerL - MFRingDz));
  LogPosition(pv);

  // Outer ones
  rout = MFRingOutR;
  rin = rout - MFRingT;
  name = idName + "OuterMFRing";
  solid = ns.addSolidNS(ns.prepend(name), Tube(rin, rout, MFRingDz));
  edm::LogVerbatim("TIBGeom") << solid.name() << " Tubs made of " << MFExtRingMat << " from 0 to "
                              << convertRadToDeg(2_pi) << " with Rin " << rin << " Rout " << rout << " ZHalf "
                              << MFRingDz;

  Volume outmfr = ns.addVolumeNS(Volume(ns.prepend(name), solid, ns.material(MFExtRingMat)));
  pv = layer.placeVolume(outmfr, 1, Position(0.0, 0.0, -0.5 * layerL + MFRingDz));
  LogPosition(pv);
  pv = layer.placeVolume(outmfr, 2, Position(0.0, 0.0, +0.5 * layerL - MFRingDz));
  LogPosition(pv);

  //
  //Central Support rings
  //
  // Ring 1
  double centZ = centRing1par[0];
  double centDz = 0.5 * centRing1par[1];
  rin = centRing1par[2];
  rout = centRing1par[3];
  name = idName + "CentRing1";
  solid = ns.addSolidNS(ns.prepend(name), Tube(rin, rout, centDz));

  edm::LogVerbatim("TIBGeom") << solid.name() << " Tubs made of " << centMat << " from 0 to " << convertRadToDeg(2_pi)
                              << " with Rin " << rin << " Rout " << rout << " ZHalf " << centDz;

  Volume cent1 = ns.addVolumeNS(Volume(ns.prepend(name), solid, ns.material(centMat)));
  pv = layer.placeVolume(cent1, 1, Position(0.0, 0.0, centZ));
  LogPosition(pv);
  // Ring 2
  centZ = centRing2par[0];
  centDz = 0.5 * centRing2par[1];
  rin = centRing2par[2];
  rout = centRing2par[3];
  name = idName + "CentRing2";
  solid = ns.addSolidNS(ns.prepend(name), Tube(rin, rout, centDz));
  edm::LogVerbatim("TIBGeom") << solid.name() << " Tubs made of " << centMat << " from 0 to " << convertRadToDeg(2_pi)
                              << " with Rin " << rin << " Rout " << rout << " ZHalf " << centDz;

  Volume cent2 = ns.addVolumeNS(Volume(ns.prepend(name), solid, ns.material(centMat)));
  pv = layer.placeVolume(cent2, 1, Position(0e0, 0e0, centZ));
  LogPosition(pv);

  //
  ////// DOHM
  //
  // Preparing DOHM Carrier solid
  //
  name = idName + "DOHMCarrier";
  double dohmCarrierRin = MFRingOutR - MFRingT;
  double dohmCarrierRout = MFRingOutR;
  double dohmCarrierDz = 0.5 * (dohmPrimL + dohmtoMF);
  double dohmCarrierZ = 0.5 * layerL - 2. * MFRingDz - dohmCarrierDz;

  solid = ns.addSolidNS(
      ns.prepend(name),
      Tube(dohmCarrierRin, dohmCarrierRout, dohmCarrierDz, dohmCarrierPhiOff, 180._deg - dohmCarrierPhiOff));
  edm::LogVerbatim("TIBGeom") << solid.name() << " Tubs made of " << dohmCarrierMaterial << " from "
                              << dohmCarrierPhiOff << " to " << 180._deg - dohmCarrierPhiOff << " with Rin "
                              << dohmCarrierRin << " Rout " << MFRingOutR << " ZHalf " << dohmCarrierDz;

  // Define FW and BW carrier logical volume and
  // place DOHM Primary and auxiliary modules inside it
  dphi = 2_pi / stringsUp;

  Rotation3D dohmRotation;
  double dohmR = 0.5 * (dohmCarrierRin + dohmCarrierRout);

  for (int j = 0; j < 4; j++) {
    vector<double> dohmList;
    Position tran;
    string rotstr;
    Rotation3D rotation;
    int dohmCarrierReplica = 0;
    int placeDohm = 0;

    Volume dohmCarrier;

    switch (j) {
      case 0:
        name = idName + "DOHMCarrierFW";
        dohmCarrier = ns.addVolumeNS(Volume(ns.prepend(name), solid, ns.material(dohmCarrierMaterial)));
        dohmList = dohmListFW;
        tran = Position(0., 0., dohmCarrierZ);
        rotstr = idName + "FwUp";
        rotation = Rotation3D();
        dohmCarrierReplica = 1;
        placeDohm = 1;
        break;
      case 1:
        name = idName + "DOHMCarrierFW";
        dohmCarrier = ns.volume(name);  // Re-use internally stored DOHMCarrierFW Volume
        dohmList = dohmListFW;
        tran = Position(0., 0., dohmCarrierZ);
        rotstr = idName + "FwDown";
        rotation = makeRotation3D(90._deg, 180._deg, 90._deg, 270._deg, 0., 0.);
        dohmCarrierReplica = 2;
        placeDohm = 0;
        break;
      case 2:
        name = idName + "DOHMCarrierBW";
        dohmCarrier = ns.addVolumeNS(Volume(ns.prepend(name), solid, ns.material(dohmCarrierMaterial)));
        dohmList = dohmListBW;
        tran = Position(0., 0., -dohmCarrierZ);
        rotstr = idName + "BwUp";
        rotation = makeRotation3D(90._deg, 180._deg, 90._deg, 90._deg, 180._deg, 0.);
        dohmCarrierReplica = 1;
        placeDohm = 1;
        break;
      case 3:
        name = idName + "DOHMCarrierBW";
        dohmCarrier = ns.volume(name);  // Re-use internally stored DOHMCarrierBW Volume
        dohmList = dohmListBW;
        tran = Position(0., 0., -dohmCarrierZ);
        rotstr = idName + "BwDown";
        rotation = makeRotation3D(90._deg, 0., 90._deg, 270._deg, 180._deg, 0.);
        dohmCarrierReplica = 2;
        placeDohm = 0;
        break;
    }

    int primReplica = 0;
    int auxReplica = 0;

    for (size_t i = 0; i < placeDohm * dohmList.size(); i++) {
      double phi = (std::abs(dohmList[i]) + 0.5 - 1.) * dphi;
      double phix = phi + 90_deg;
      double phideg = convertRadToDeg(phix);
      if (phideg != 0) {
        double theta = 90_deg;
        double phiy = phix + 90._deg;
        dohmRotation = makeRotation3D(theta, phix, theta, phiy, 0., 0.);
      }
      int dohmReplica = 0;
      double dohmZ = 0.;
      Volume dohm;

      if (dohmList[i] < 0.) {
        // Place a Auxiliary DOHM
        dohm = ns.volume(dohmAuxName);
        dohmZ = dohmCarrierDz - 0.5 * dohmAuxL - dohmtoMF;
        primReplica++;
        dohmReplica = primReplica;
      } else {
        // Place a Primary DOHM
        dohm = ns.volume(dohmPrimName);
        dohmZ = dohmCarrierDz - 0.5 * dohmPrimL - dohmtoMF;
        auxReplica++;
        dohmReplica = auxReplica;
      }
      Position dohmTrasl(dohmR * cos(phi), dohmR * sin(phi), dohmZ);
      pv = dohmCarrier.placeVolume(dohm, dohmReplica, Transform3D(dohmRotation, dohmTrasl));
      LogPosition(pv);
    }

    pv = layer.placeVolume(dohmCarrier, dohmCarrierReplica, Transform3D(rotation, tran));
    LogPosition(pv);
  }
  //
  ////// PILLARS
  for (int j = 0; j < 4; j++) {
    vector<double> pillarZ;
    vector<double> pillarPhi;
    double pillarDz = 0, pillarDPhi = 0, pillarRin = 0, pillarRout = 0;

    switch (j) {
      case 0:
        name = idName + "FWIntPillar";
        pillarZ = fwIntPillarZ;
        pillarPhi = fwIntPillarPhi;
        pillarRin = MFRingInR;
        pillarRout = MFRingInR + MFRingT;
        pillarDz = fwIntPillarDz;
        pillarDPhi = fwIntPillarDPhi;
        break;
      case 1:
        name = idName + "BWIntPillar";
        pillarZ = bwIntPillarZ;
        pillarPhi = bwIntPillarPhi;
        pillarRin = MFRingInR;
        pillarRout = MFRingInR + MFRingT;
        pillarDz = bwIntPillarDz;
        pillarDPhi = bwIntPillarDPhi;
        break;
      case 2:
        name = idName + "FWExtPillar";
        pillarZ = fwExtPillarZ;
        pillarPhi = fwExtPillarPhi;
        pillarRin = MFRingOutR - MFRingT;
        pillarRout = MFRingOutR;
        pillarDz = fwExtPillarDz;
        pillarDPhi = fwExtPillarDPhi;
        break;
      case 3:
        name = idName + "BWExtPillar";
        pillarZ = bwExtPillarZ;
        pillarPhi = bwExtPillarPhi;
        pillarRin = MFRingOutR - MFRingT;
        pillarRout = MFRingOutR;
        pillarDz = bwExtPillarDz;
        pillarDPhi = bwExtPillarDPhi;
        break;
    }

    solid = ns.addSolidNS(ns.prepend(name), Tube(pillarRin, pillarRout, pillarDz, -pillarDPhi, pillarDPhi));
    Volume Pillar = ns.addVolumeNS(Volume(ns.prepend(name), solid, ns.material(pillarMaterial)));
    edm::LogVerbatim("TIBGeom") << solid.name() << " Tubs made of " << pillarMaterial << " from " << -pillarDPhi
                                << " to " << pillarDPhi << " with Rin " << pillarRin << " Rout " << pillarRout
                                << " ZHalf " << pillarDz;
    Position pillarTran;
    Rotation3D pillarRota;
    for (unsigned int i = 0; i < pillarZ.size(); i++) {
      if (pillarPhi[i] > 0.) {
        pillarTran = Position(0., 0., pillarZ[i]);
        pillarRota = makeRotation3D(90._deg, pillarPhi[i], 90._deg, 90._deg + pillarPhi[i], 0., 0.);
        pv = layer.placeVolume(Pillar, i, Transform3D(pillarRota, pillarTran));
        LogPosition(pv);
      }
    }
  }
  return 1;
}

// first argument is the type from the xml file
DECLARE_DDCMS_DETELEMENT(DDCMS_track_DDTIBLayerAlgo, algorithm)