ddcms_det_element_DDCMS_track_DDTOBRadCableAlgo

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#include "DD4hep/DetFactoryHelper.h"
#include "DataFormats/Math/interface/CMSUnits.h"
#include "DetectorDescription/DDCMS/interface/DDPlugins.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"

using namespace std;
using namespace dd4hep;
using namespace cms;
using namespace cms_units::operators;

static long algorithm(Detector& /* description */, cms::DDParsingContext& ctxt, xml_h e) {
  cms::DDNamespace ns(ctxt, e, true);
  DDAlgoArguments args(ctxt, e);
  double diskDz = args.dble("DiskDz");                   // Disk  thickness
  double rMax = args.dble("RMax");                       // Maximum radius
  double cableT = args.dble("CableT");                   // Cable thickness
  vector<double> rodRin = args.vecDble("RodRin");        // Radii for inner rods
  vector<double> rodRout = args.vecDble("RodRout");      // Radii for outer rods
  vector<string> cableM = args.vecStr("CableMaterial");  // Materials for cables
  double connW = args.dble("ConnW");                     // Connector width
  double connT = args.dble("ConnT");                     // Connector thickness
  vector<string> connM = args.vecStr("ConnMaterial");    // Materials for connectors
  vector<double> coolR1 = args.vecDble("CoolR1");        // Radii for cooling manifold
  vector<double> coolR2 = args.vecDble("CoolR2");        // Radii for return cooling manifold
  double coolRin = args.dble("CoolRin");                 // Inner radius of cooling manifold
  double coolRout1 = args.dble("CoolRout1");             // Outer radius of cooling manifold
  double coolRout2 = args.dble("CoolRout2");             // Outer radius of cooling fluid in cooling manifold
  double coolStartPhi1 = args.dble("CoolStartPhi1");     // Starting Phi of cooling manifold
  double coolDeltaPhi1 = args.dble("CoolDeltaPhi1");     // Phi Range of cooling manifold
  double coolStartPhi2 = args.dble("CoolStartPhi2");     // Starting Phi of cooling fluid in of cooling manifold
  double coolDeltaPhi2 = args.dble("CoolDeltaPhi2");     // Phi Range of of cooling fluid in cooling manifold
  string coolM1 = args.str("CoolMaterial1");             // Material for cooling manifold
  string coolM2 = args.str("CoolMaterial2");             // Material for cooling fluid
  vector<string> names = args.vecStr("RingName");        // Names of layers

  string parentName = args.parentName();
  edm::LogVerbatim("TOBGeom") << "DDTOBRadCableAlgo debug: Parent " << parentName << " NameSpace " << ns.name();
  edm::LogVerbatim("TOBGeom") << "DDTOBRadCableAlgo debug: Disk Half width " << diskDz << "\tRMax " << rMax
                              << "\tCable Thickness " << cableT << "\tRadii of disk position and cable materials:";
  for (int i = 0; i < (int)(rodRin.size()); i++)
    edm::LogVerbatim("TOBGeom") << "\t[" << i << "]\tRin = " << rodRin[i] << "\tRout = " << rodRout[i] << "  "
                                << cableM[i];
  edm::LogVerbatim("TOBGeom") << "DDTOBRadCableAlgo debug: Connector Width = " << connW << "\tThickness = " << connT
                              << "\tMaterials: ";
  for (int i = 0; i < (int)(connM.size()); i++)
    edm::LogVerbatim("TOBGeom") << "\tconnM[" << i << "] = " << connM[i];
  edm::LogVerbatim("TOBGeom") << "DDTOBRadCableAlgo debug: Cool Manifold Torus Rin = " << coolRin
                              << " Rout = " << coolRout1 << "\t Phi start = " << coolStartPhi1
                              << " Phi Range = " << coolDeltaPhi1 << "\t Material = " << coolM1
                              << "\t Radial positions:";
  for (int i = 0; i < (int)(coolR1.size()); i++)
    edm::LogVerbatim("TOBGeom") << "\t[" << i << "]\tR = " << coolR1[i];
  for (int i = 0; i < (int)(coolR2.size()); i++)
    edm::LogVerbatim("TOBGeom") << "\t[" << i << "]\tR = " << coolR2[i];
  edm::LogVerbatim("TOBGeom") << "DDTOBRadCableAlgo debug: Cooling Fluid Torus Rin = " << coolRin
                              << " Rout = " << coolRout2 << "\t Phi start = " << coolStartPhi2
                              << " Phi Range = " << coolDeltaPhi2 << "\t Material = " << coolM2
                              << "\t Radial positions:";
  for (int i = 0; i < (int)(coolR1.size()); i++)
    edm::LogVerbatim("TOBGeom") << "\t[" << i << "]\tR = " << coolR1[i];
  for (int i = 0; i < (int)(coolR2.size()); i++)
    edm::LogVerbatim("TOBGeom") << "\t[" << i << "]\tR = " << coolR2[i];
  for (int i = 0; i < (int)(names.size()); i++)
    edm::LogVerbatim("TOBGeom") << "DDTOBRadCableAlgo debug: names[" << i << "] = " << names[i];

  Volume disk = ns.volume(parentName);
  // Loop over sub disks
  for (int i = 0; i < (int)(names.size()); i++) {
    Solid solid;
    string name;
    double dz, rin, rout;

    // Cooling Manifolds
    name = "TOBCoolingManifold" + names[i] + "a";
    dz = coolRout1;
    solid = ns.addSolid(ns.prepend(name), Torus(coolR1[i], coolRin, coolRout1, coolStartPhi1, coolDeltaPhi1));
    edm::LogVerbatim("TOBGeom") << solid.name() << " Torus made of " << coolM1 << " from "
                                << convertRadToDeg(coolStartPhi1) << " to "
                                << convertRadToDeg((coolStartPhi1 + coolDeltaPhi1)) << " with Rin " << coolRin
                                << " Rout " << coolRout1 << " R torus " << coolR1[i];
    Volume coolManifoldLogic_a = ns.addVolume(Volume(solid.name(), solid, ns.material(coolM1)));
    Position r1(0, 0, (dz - diskDz));
    disk.placeVolume(coolManifoldLogic_a, i + 1, r1);  // i+1
    edm::LogVerbatim("TOBGeom") << solid.name() << " number " << i + 1 << " positioned in " << disk.name() << " at "
                                << r1 << " with no rotation";

    // Cooling Fluid (in Cooling Manifold)
    name = "TOBCoolingManifoldFluid" + names[i] + "a";
    solid = ns.addSolid(ns.prepend(name), Torus(coolR1[i], coolRin, coolRout2, coolStartPhi2, coolDeltaPhi2));
    edm::LogVerbatim("TOBGeom") << solid.name() << " Torus made of " << coolM2 << " from "
                                << convertRadToDeg(coolStartPhi2) << " to "
                                << convertRadToDeg((coolStartPhi2 + coolDeltaPhi2)) << " with Rin " << coolRin
                                << " Rout " << coolRout2 << " R torus " << coolR1[i];
    Volume coolManifoldFluidLogic_a = ns.addVolume(Volume(solid.name(), solid, ns.material(coolM2)));
    coolManifoldLogic_a.placeVolume(coolManifoldFluidLogic_a, i + 1);  // i+1
    edm::LogVerbatim("TOBGeom") << solid.name() << " number " << i + 1 << " positioned in " << coolM2
                                << " with no translation and no rotation";

    name = "TOBCoolingManifold" + names[i] + "r";
    dz = coolRout1;
    solid = ns.addSolid(ns.prepend(name), Torus(coolR2[i], coolRin, coolRout1, coolStartPhi1, coolDeltaPhi1));
    edm::LogVerbatim("TOBGeom") << solid.name() << " Torus made of " << coolM1 << " from "
                                << convertRadToDeg(coolStartPhi1) << " to "
                                << convertRadToDeg((coolStartPhi1 + coolDeltaPhi1)) << " with Rin " << coolRin
                                << " Rout " << coolRout1 << " R torus " << coolR2[i];
    Volume coolManifoldLogic_r = ns.addVolume(Volume(solid.name(), solid, ns.material(coolM1)));
    r1 = Position(0, 0, (dz - diskDz));
    disk.placeVolume(coolManifoldLogic_r, i + 1, r1);  // i+1
    edm::LogVerbatim("TOBGeom") << solid.name() << " number " << i + 1 << " positioned in " << disk.name() << " at "
                                << r1 << " with no rotation";

    // Cooling Fluid (in Cooling Manifold)
    name = "TOBCoolingManifoldFluid" + names[i] + "r";
    solid = ns.addSolid(ns.prepend(name), Torus(coolR2[i], coolRin, coolRout2, coolStartPhi2, coolDeltaPhi2));
    edm::LogVerbatim("TOBGeom") << solid.name() << " Torus made of " << coolM2 << " from "
                                << convertRadToDeg(coolStartPhi2) << " to "
                                << convertRadToDeg((coolStartPhi2 + coolDeltaPhi2)) << " with Rin " << coolRin
                                << " Rout " << coolRout2 << " R torus " << coolR2[i];
    Volume coolManifoldFluidLogic_r = ns.addVolume(Volume(solid.name(), solid, ns.material(coolM2)));
    coolManifoldLogic_r.placeVolume(coolManifoldFluidLogic_r, i + 1);  // i+1
    edm::LogVerbatim("TOBGeom") << solid.name() << " number " << i + 1 << " positioned in " << coolM2
                                << " with no translation and no rotation";

    // Connectors
    name = "TOBConn" + names[i];
    dz = 0.5 * connT;
    rin = 0.5 * (rodRin[i] + rodRout[i]) - 0.5 * connW;
    rout = 0.5 * (rodRin[i] + rodRout[i]) + 0.5 * connW;
    solid = ns.addSolid(ns.prepend(name), Tube(rin, rout, dz));
    edm::LogVerbatim("TOBGeom") << solid.name() << " Tubs made of " << connM[i] << " from 0 to "
                                << convertRadToDeg(2_pi) << " with Rin " << rin << " Rout " << rout << " ZHalf " << dz;
    Volume connLogic = ns.addVolume(Volume(solid.name(), solid, ns.material(connM[i])));
    Position r2(0, 0, (dz - diskDz));
    disk.placeVolume(connLogic, i + 1, r2);  // i+1
    edm::LogVerbatim("TOBGeom") << solid.name() << " number " << i + 1 << " positioned in " << disk.name() << " at "
                                << r2 << " with no rotation";

    // Now the radial cable
    name = "TOBRadServices" + names[i];
    rin = 0.5 * (rodRin[i] + rodRout[i]);
    rout = (i + 1 == (int)(names.size()) ? rMax : 0.5 * (rodRin[i + 1] + rodRout[i + 1]));
    vector<double> pgonZ;
    pgonZ.emplace_back(-0.5 * cableT);
    pgonZ.emplace_back(cableT * (rin / rMax - 0.5));
    pgonZ.emplace_back(0.5 * cableT);
    vector<double> pgonRmin;
    pgonRmin.emplace_back(rin);
    pgonRmin.emplace_back(rin);
    pgonRmin.emplace_back(rin);
    vector<double> pgonRmax;
    pgonRmax.emplace_back(rout);
    pgonRmax.emplace_back(rout);
    pgonRmax.emplace_back(rout);
    solid = ns.addSolid(ns.prepend(name), Polycone(0, 2_pi, pgonRmin, pgonRmax, pgonZ));
    edm::LogVerbatim("TOBGeom") << solid.name() << " Polycone made of " << cableM[i] << " from 0 to "
                                << convertRadToDeg(2_pi) << " and with " << pgonZ.size() << " sections";
    for (int ii = 0; ii < (int)(pgonZ.size()); ii++)
      edm::LogVerbatim("TOBGeom") << "\t[" << ii << "]\tZ = " << pgonZ[ii] << "\tRmin = " << pgonRmin[ii]
                                  << "\tRmax = " << pgonRmax[ii];
    Volume cableLogic = ns.addVolume(Volume(solid.name(), solid, ns.material(cableM[i])));
    Position r3(0, 0, (diskDz - (i + 0.5) * cableT));
    disk.placeVolume(cableLogic, i + 1, r3);  // i+1
    edm::LogVerbatim("TOBGeom") << solid.name() << " number " << i + 1 << " positioned in " << disk.name() << " at "
                                << r3 << " with no rotation";
  }
  edm::LogVerbatim("TOBGeom") << "<<== End of DDTOBRadCableAlgo construction ...";
  return 1;
}

// first argument is the type from the xml file
DECLARE_DDCMS_DETELEMENT(DDCMS_track_DDTOBRadCableAlgo, algorithm)