1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
import FWCore.ParameterSet.Config as cms
hltTiclTrackstersRecovery = cms.EDProducer("TrackstersProducer",
detector = cms.string('HGCAL'),
filtered_mask = cms.InputTag("hltFilteredLayerClustersRecovery","Recovery"),
itername = cms.string('Recovery'),
layer_clusters = cms.InputTag("hltHgcalMergeLayerClusters"),
layer_clusters_hfnose_tiles = cms.InputTag("ticlLayerTileHFNose"),
layer_clusters_tiles = cms.InputTag("hltTiclLayerTileProducer"),
mightGet = cms.optional.untracked.vstring,
original_mask = cms.InputTag("hltTiclTrackstersCLUE3DHigh"),
patternRecognitionBy = cms.string('Recovery'),
inferenceAlgo = cms.string('TracksterInferenceByPFN'),
pluginPatternRecognitionByCA = cms.PSet(
algo_verbosity = cms.int32(0),
computeLocalTime = cms.bool(True),
energy_em_over_total_threshold = cms.double(-1),
etaLimitIncreaseWindow = cms.double(2.1),
filter_on_categories = cms.vint32(0),
max_delta_time = cms.double(3),
max_longitudinal_sigmaPCA = cms.double(9999),
max_missing_layers_in_trackster = cms.int32(9999),
max_out_in_hops = cms.int32(10),
min_cos_pointing = cms.double(-1),
min_cos_theta = cms.double(0.915),
min_layers_per_trackster = cms.int32(10),
oneTracksterPerTrackSeed = cms.bool(False),
out_in_dfs = cms.bool(True),
pid_threshold = cms.double(0),
promoteEmptyRegionToTrackster = cms.bool(False),
root_doublet_max_distance_from_seed_squared = cms.double(9999),
shower_start_max_layer = cms.int32(9999),
siblings_maxRSquared = cms.vdouble(0.0006, 0.0006, 0.0006),
skip_layers = cms.int32(0),
type = cms.string('CA')
),
pluginPatternRecognitionByCLUE3D = cms.PSet(
algo_verbosity = cms.int32(0),
computeLocalTime = cms.bool(True),
criticalDensity = cms.vdouble(4, 4, 4),
criticalEtaPhiDistance = cms.vdouble(0.025, 0.025, 0.025),
criticalSelfDensity = cms.vdouble(0.15, 0.15, 0.15),
criticalXYDistance = cms.vdouble(1.8, 1.8, 1.8),
criticalZDistanceLyr = cms.vint32(5, 5, 5),
cutHadProb = cms.double(0.5),
densityEtaPhiDistanceSqr = cms.vdouble(0.0008, 0.0008, 0.0008),
densityOnSameLayer = cms.bool(False),
densitySiblingLayers = cms.vint32(3, 3, 3),
densityXYDistanceSqr = cms.vdouble(3.24, 3.24, 3.24),
doPidCut = cms.bool(False),
kernelDensityFactor = cms.vdouble(0.2, 0.2, 0.2),
minNumLayerCluster = cms.vint32(2, 2, 2),
nearestHigherOnSameLayer = cms.bool(False),
outlierMultiplier = cms.vdouble(2, 2, 2),
rescaleDensityByZ = cms.bool(False),
type = cms.string('CLUE3D'),
useAbsoluteProjectiveScale = cms.bool(True),
useClusterDimensionXY = cms.bool(False)
),
pluginPatternRecognitionByFastJet = cms.PSet(
algo_verbosity = cms.int32(0),
antikt_radius = cms.double(0.09),
computeLocalTime = cms.bool(True),
minNumLayerCluster = cms.int32(5),
type = cms.string('FastJet')
),
pluginPatternRecognitionByRecovery = cms.PSet(
algo_verbosity = cms.int32(0),
type = cms.string('Recovery')
),
pluginInferenceAlgoTracksterInferenceByDNN = cms.PSet(
algo_verbosity = cms.int32(0),
onnxPIDModelPath = cms.FileInPath('RecoHGCal/TICL/data/ticlv5/onnx_models/DNN/patternrecognition/id_v0.onnx'),
onnxEnergyModelPath = cms.FileInPath('RecoHGCal/TICL/data/ticlv5/onnx_models/DNN/patternrecognition/energy_v0.onnx'),
inputNames = cms.vstring('input'),
output_en = cms.vstring('enreg_output'),
output_id = cms.vstring('pid_output'),
eid_min_cluster_energy = cms.double(1),
eid_n_layers = cms.int32(50),
eid_n_clusters = cms.int32(10),
doPID = cms.int32(0),
doRegression = cms.int32(0),
type = cms.string('TracksterInferenceByDNN')
),
pluginInferenceAlgoTracksterInferenceByPFN = cms.PSet(
algo_verbosity = cms.int32(0),
onnxPIDModelPath = cms.FileInPath('RecoHGCal/TICL/data/ticlv5/onnx_models/PFN/patternrecognition/id_v0.onnx'),
onnxEnergyModelPath = cms.FileInPath('RecoHGCal/TICL/data/ticlv5/onnx_models/PFN/patternrecognition/energy_v0.onnx'),
inputNames = cms.vstring('input','input_tr_features'),
output_en = cms.vstring('enreg_output'),
output_id = cms.vstring('pid_output'),
eid_min_cluster_energy = cms.double(1),
eid_n_layers = cms.int32(50),
eid_n_clusters = cms.int32(10),
doPID = cms.int32(0),
doRegression = cms.int32(0),
type = cms.string('TracksterInferenceByPFN')
),
pluginInferenceAlgoTracksterInferenceByANN = cms.PSet(
algo_verbosity = cms.int32(0),
type = cms.string('TracksterInferenceByANN')
),
seeding_regions = cms.InputTag("hltTiclSeedingGlobal"),
time_layerclusters = cms.InputTag("hltHgcalMergeLayerClusters","timeLayerCluster")
)
|