1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include "FWCore/Framework/interface/ESHandle.h"
#include "FWCore/Framework/interface/EventSetup.h"
#include "DataFormats/Common/interface/Handle.h"
#include "DataFormats/HLTReco/interface/TriggerFilterObjectWithRefs.h"
#include "DataFormats/Common/interface/Ref.h"
#include "FWCore/Framework/interface/MakerMacros.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "TVector3.h"
#include "TLorentzVector.h"
#include "FWCore/ParameterSet/interface/ConfigurationDescriptions.h"
#include "FWCore/ParameterSet/interface/ParameterSetDescription.h"
#include "FWCore/Utilities/interface/InputTag.h"
#include "DataFormats/RecoCandidate/interface/RecoChargedCandidate.h"
#include "HLTrigger/JetMET/interface/HLTRHemisphere.h"
#include <vector>
//
// constructors and destructor
//
HLTRHemisphere::HLTRHemisphere(const edm::ParameterSet& iConfig)
: inputTag_(iConfig.getParameter<edm::InputTag>("inputTag")),
muonTag_(iConfig.getParameter<edm::InputTag>("muonTag")),
doMuonCorrection_(iConfig.getParameter<bool>("doMuonCorrection")),
muonEta_(iConfig.getParameter<double>("maxMuonEta")),
min_Jet_Pt_(iConfig.getParameter<double>("minJetPt")),
max_Eta_(iConfig.getParameter<double>("maxEta")),
max_NJ_(iConfig.getParameter<int>("maxNJ")),
accNJJets_(iConfig.getParameter<bool>("acceptNJ")) {
LogDebug("") << "Input/minJetPt/maxEta/maxNJ/acceptNJ : " << inputTag_.encode() << " " << min_Jet_Pt_ << "/"
<< max_Eta_ << "/" << max_NJ_ << "/" << accNJJets_ << ".";
m_theJetToken = consumes<edm::View<reco::Jet>>(inputTag_);
m_theMuonToken = consumes<std::vector<reco::RecoChargedCandidate>>(muonTag_);
//register your products
produces<std::vector<math::XYZTLorentzVector>>();
}
HLTRHemisphere::~HLTRHemisphere() = default;
void HLTRHemisphere::fillDescriptions(edm::ConfigurationDescriptions& descriptions) {
edm::ParameterSetDescription desc;
desc.add<edm::InputTag>("inputTag", edm::InputTag("hltMCJetCorJetIcone5HF07"));
desc.add<edm::InputTag>("muonTag", edm::InputTag(""));
desc.add<bool>("doMuonCorrection", false);
desc.add<double>("maxMuonEta", 2.1);
desc.add<double>("minJetPt", 30.0);
desc.add<double>("maxEta", 3.0);
desc.add<int>("maxNJ", 7);
desc.add<bool>("acceptNJ", true);
descriptions.add("hltRHemisphere", desc);
}
//
// member functions
//
// ------------ method called to produce the data ------------
bool HLTRHemisphere::filter(edm::Event& iEvent, const edm::EventSetup& iSetup) {
using namespace std;
using namespace edm;
using namespace reco;
using namespace math;
using namespace trigger;
typedef XYZTLorentzVector LorentzVector;
// get hold of collection of objects
// Handle<CaloJetCollection> jets;
Handle<View<Jet>> jets;
iEvent.getByToken(m_theJetToken, jets);
// get hold of the muons, if necessary
Handle<vector<reco::RecoChargedCandidate>> muons;
if (doMuonCorrection_)
iEvent.getByToken(m_theMuonToken, muons);
// The output Collection
std::unique_ptr<vector<math::XYZTLorentzVector>> Hemispheres(new vector<math::XYZTLorentzVector>);
// look at all objects, check cuts and add to filter object
int n(0);
vector<math::XYZTLorentzVector> JETS;
for (auto const& i : *jets) {
if (std::abs(i.eta()) < max_Eta_ && i.pt() >= min_Jet_Pt_) {
JETS.push_back(i.p4());
n++;
}
}
if (n > max_NJ_ && max_NJ_ != -1) {
iEvent.put(std::move(Hemispheres));
return accNJJets_; // too many jets, accept for timing
}
if (doMuonCorrection_) {
const int nMu = 2;
int muonIndex[nMu] = {-1, -1};
std::vector<reco::RecoChargedCandidate>::const_iterator muonIt;
int index = 0;
int nPassMu = 0;
for (muonIt = muons->begin(); muonIt != muons->end(); muonIt++, index++) {
if (std::abs(muonIt->eta()) > muonEta_ || muonIt->pt() < min_Jet_Pt_)
continue; // skip muons out of eta range or too low pT
if (nPassMu >= 2) { // if we have already accepted two muons, accept the event
iEvent.put(std::move(Hemispheres)); // too many muons, accept for timing
return true;
}
muonIndex[nPassMu++] = index;
}
//muons as MET
this->ComputeHemispheres(Hemispheres, JETS);
//lead muon as jet
if (nPassMu > 0) {
std::vector<math::XYZTLorentzVector> muonJets;
reco::RecoChargedCandidate leadMu = muons->at(muonIndex[0]);
muonJets.push_back(leadMu.p4());
Hemispheres->push_back(leadMu.p4());
this->ComputeHemispheres(Hemispheres, JETS, &muonJets); // lead muon as jet
if (nPassMu > 1) { // two passing muons
muonJets.pop_back();
reco::RecoChargedCandidate secondMu = muons->at(muonIndex[1]);
muonJets.push_back(secondMu.p4());
Hemispheres->push_back(secondMu.p4());
this->ComputeHemispheres(Hemispheres, JETS, &muonJets); // lead muon as v, second muon as jet
muonJets.push_back(leadMu.p4());
this->ComputeHemispheres(Hemispheres, JETS, &muonJets); // both muon as jets
}
}
} else { // do MuonCorrection==false
if (n < 2)
return false; // not enough jets and not adding in muons
this->ComputeHemispheres(Hemispheres, JETS); // don't do the muon isolation, just run once and done
}
//Format:
// 0 muon: 2 hemispheres (2)
// 1 muon: 2 hemisheress + leadMuP4 + 2 hemispheres (5)
// 2 muon: 2 hemispheres + leadMuP4 + 2 hemispheres + 2ndMuP4 + 4 Hemispheres (10)
iEvent.put(std::move(Hemispheres));
return true;
}
void HLTRHemisphere::ComputeHemispheres(std::unique_ptr<std::vector<math::XYZTLorentzVector>>& hlist,
const std::vector<math::XYZTLorentzVector>& JETS,
std::vector<math::XYZTLorentzVector>* extraJets) {
using namespace math;
using namespace reco;
XYZTLorentzVector j1R(0.1, 0., 0., 0.1);
XYZTLorentzVector j2R(0.1, 0., 0., 0.1);
int nJets = JETS.size();
if (extraJets)
nJets += extraJets->size();
if (nJets < 2) { // put empty hemispheres if not enough jets
hlist->push_back(j1R);
hlist->push_back(j2R);
return;
}
unsigned int N_comb = pow(2, nJets); // compute the number of combinations of jets possible
//Make the hemispheres
double M_minR = 9999999999.0;
unsigned int j_count;
for (unsigned int i = 0; i < N_comb; i++) {
XYZTLorentzVector j_temp1, j_temp2;
unsigned int itemp = i;
j_count = N_comb / 2;
unsigned int count = 0;
while (j_count > 0) {
if (itemp / j_count == 1) {
if (count < JETS.size())
j_temp1 += JETS.at(count);
else {
assert(extraJets); // to silence LLVM analyzer warning
j_temp1 += extraJets->at(count - JETS.size());
}
} else {
if (count < JETS.size())
j_temp2 += JETS.at(count);
else {
assert(extraJets); // to silence LLVM analyzer warning
j_temp2 += extraJets->at(count - JETS.size());
}
}
itemp -= j_count * (itemp / j_count);
j_count /= 2;
count++;
}
double M_temp = j_temp1.M2() + j_temp2.M2();
if (M_temp < M_minR) {
M_minR = M_temp;
j1R = j_temp1;
j2R = j_temp2;
}
}
hlist->push_back(j1R);
hlist->push_back(j2R);
return;
}
DEFINE_FWK_MODULE(HLTRHemisphere);
|