1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
#include <algorithm>
#include <cmath>
#include <vector>
#include "FWCore/Framework/interface/ESHandle.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "FWCore/ParameterSet/interface/ConfigurationDescriptions.h"
#include "DataFormats/BeamSpot/interface/BeamSpot.h"
#include "DataFormats/Math/interface/deltaR.h"
#include "DataFormats/RecoCandidate/interface/RecoCandidate.h"
#include "DataFormats/RecoCandidate/interface/RecoChargedCandidate.h"
#include "DataFormats/VertexReco/interface/Vertex.h"
#include "DataFormats/VertexReco/interface/VertexFwd.h"
#include "TrackingTools/PatternTools/interface/TSCBLBuilderNoMaterial.h"
#include "TrackingTools/TrajectoryParametrization/interface/GlobalTrajectoryParameters.h"
#include "TrackingTools/TrajectoryState/interface/FreeTrajectoryState.h"
#include "RecoVertex/KalmanVertexFit/interface/KalmanVertexFitter.h"
#include "RecoVertex/VertexPrimitives/interface/TransientVertex.h"
#include "HLTmumutktkVtxProducer.h"
using namespace edm;
using namespace reco;
using namespace std;
using namespace trigger;
HLTmumutktkVtxProducer::HLTmumutktkVtxProducer(const edm::ParameterSet& iConfig)
: transientTrackRecordToken_(esConsumes(edm::ESInputTag("", "TransientTrackBuilder"))),
muCandTag_(iConfig.getParameter<edm::InputTag>("MuCand")),
muCandToken_(consumes<reco::RecoChargedCandidateCollection>(muCandTag_)),
trkCandTag_(iConfig.getParameter<edm::InputTag>("TrackCand")),
trkCandToken_(consumes<reco::RecoChargedCandidateCollection>(trkCandTag_)),
previousCandTag_(iConfig.getParameter<edm::InputTag>("PreviousCandTag")),
previousCandToken_(consumes<trigger::TriggerFilterObjectWithRefs>(previousCandTag_)),
mfName_(iConfig.getParameter<std::string>("SimpleMagneticField")),
idealMagneticFieldRecordToken_(esConsumes(edm::ESInputTag("", mfName_))),
thirdTrackMass_(iConfig.getParameter<double>("ThirdTrackMass")),
fourthTrackMass_(iConfig.getParameter<double>("FourthTrackMass")),
maxEta_(iConfig.getParameter<double>("MaxEta")),
minPt_(iConfig.getParameter<double>("MinPt")),
minInvMass_(iConfig.getParameter<double>("MinInvMass")),
maxInvMass_(iConfig.getParameter<double>("MaxInvMass")),
minTrkTrkMass_(iConfig.getParameter<double>("MinTrkTrkMass")),
maxTrkTrkMass_(iConfig.getParameter<double>("MaxTrkTrkMass")),
minD0Significance_(iConfig.getParameter<double>("MinD0Significance")),
oppositeSign_(iConfig.getParameter<bool>("OppositeSign")),
// minimum delta-R^2 threshold (with sign) for non-overlapping tracks
overlapDR2_(iConfig.getParameter<double>("OverlapDR") * std::abs(iConfig.getParameter<double>("OverlapDR"))),
beamSpotTag_(iConfig.getParameter<edm::InputTag>("BeamSpotTag")),
beamSpotToken_(consumes<reco::BeamSpot>(beamSpotTag_)) {
produces<VertexCollection>();
}
void HLTmumutktkVtxProducer::fillDescriptions(edm::ConfigurationDescriptions& descriptions) {
edm::ParameterSetDescription desc;
desc.add<edm::InputTag>("MuCand", edm::InputTag("hltMuTracks"));
desc.add<edm::InputTag>("TrackCand", edm::InputTag("hltMumukAllConeTracks"));
desc.add<edm::InputTag>("PreviousCandTag", edm::InputTag("hltDisplacedmumuFilterDoubleMu4Jpsi"));
desc.add<std::string>("SimpleMagneticField", "");
desc.add<double>("ThirdTrackMass", 0.493677);
desc.add<double>("FourthTrackMass", 0.493677);
desc.add<double>("MaxEta", 2.5);
desc.add<double>("MinPt", 0.0);
desc.add<double>("MinInvMass", 0.0);
desc.add<double>("MaxInvMass", 99999.);
desc.add<double>("MinTrkTrkMass", 0.0);
desc.add<double>("MaxTrkTrkMass", 99999.);
desc.add<double>("MinD0Significance", 0.0);
desc.add<bool>("OppositeSign", false);
desc.add<double>("OverlapDR", 0.001);
desc.add<edm::InputTag>("BeamSpotTag", edm::InputTag("hltOfflineBeamSpot"));
descriptions.add("HLTmumutktkVtxProducer", desc);
}
void HLTmumutktkVtxProducer::produce(edm::Event& iEvent, const edm::EventSetup& iSetup) {
const double MuMass(0.106);
const double MuMass2(MuMass * MuMass);
const double thirdTrackMass2(thirdTrackMass_ * thirdTrackMass_);
const double fourthTrackMass2(fourthTrackMass_ * fourthTrackMass_);
// get hold of muon trks
Handle<RecoChargedCandidateCollection> mucands;
iEvent.getByToken(muCandToken_, mucands);
// get the transient track builder
auto const& theB = iSetup.getHandle(transientTrackRecordToken_);
// get the beamspot position
edm::Handle<reco::BeamSpot> recoBeamSpotHandle;
iEvent.getByToken(beamSpotToken_, recoBeamSpotHandle);
// get the b field
auto const& bFieldHandle = iSetup.getHandle(idealMagneticFieldRecordToken_);
const MagneticField* magField = bFieldHandle.product();
TSCBLBuilderNoMaterial blsBuilder;
// get track candidates around displaced muons
Handle<RecoChargedCandidateCollection> trkcands;
iEvent.getByToken(trkCandToken_, trkcands);
unique_ptr<VertexCollection> vertexCollection(new VertexCollection());
// Ref to Candidate object to be recorded in filter object
RecoChargedCandidateRef refMu1;
RecoChargedCandidateRef refMu2;
RecoChargedCandidateRef refTrk1;
RecoChargedCandidateRef refTrk2;
double e1, e2, e3_m3, e3_m4, e4_m3, e4_m4;
Particle::LorentzVector p, pBar, p1, p2, p3_m3, p3_m4, p4_m3, p4_m4, p_m3m4, p_m4m3;
if (mucands->size() < 2)
return;
if (trkcands->size() < 2)
return;
RecoChargedCandidateCollection::const_iterator mucand1;
RecoChargedCandidateCollection::const_iterator mucand2;
RecoChargedCandidateCollection::const_iterator trkcand1;
RecoChargedCandidateCollection::const_iterator trkcand2;
// get the objects passing the previous filter
Handle<TriggerFilterObjectWithRefs> previousCands;
iEvent.getByToken(previousCandToken_, previousCands);
vector<RecoChargedCandidateRef> vPrevCands;
previousCands->getObjects(TriggerMuon, vPrevCands);
for (mucand1 = mucands->begin(); mucand1 != mucands->end(); ++mucand1) {
TrackRef trk1 = mucand1->get<TrackRef>();
LogDebug("HLTmumutktkVtxProducer") << " 1st muon: q*pt= " << trk1->charge() * trk1->pt() << ", eta= " << trk1->eta()
<< ", hits= " << trk1->numberOfValidHits();
//first check if this muon passed the previous filter
if (!checkPreviousCand(trk1, vPrevCands))
continue;
// eta and pt cut
if (fabs(trk1->eta()) > maxEta_)
continue;
if (trk1->pt() < minPt_)
continue;
mucand2 = mucand1;
++mucand2;
for (; mucand2 != mucands->end(); mucand2++) {
TrackRef trk2 = mucand2->get<TrackRef>();
if (overlap(trk1, trk2))
continue;
LogDebug("HLTDisplacedMumukFilter") << " 2nd muon: q*pt= " << trk2->charge() * trk2->pt()
<< ", eta= " << trk2->eta() << ", hits= " << trk2->numberOfValidHits();
//first check if this muon passed the previous filter
if (!checkPreviousCand(trk2, vPrevCands))
continue;
// eta and pt cut
if (fabs(trk2->eta()) > maxEta_)
continue;
if (trk2->pt() < minPt_)
continue;
//loop on track collection - trk1
for (trkcand1 = trkcands->begin(); trkcand1 != trkcands->end(); ++trkcand1) {
TrackRef trk3 = trkcand1->get<TrackRef>();
if (overlap(trk1, trk3))
continue;
if (overlap(trk2, trk3))
continue;
LogDebug("HLTDisplacedMumukFilter") << " 3rd track: q*pt= " << trk3->charge() * trk3->pt()
<< ", eta= " << trk3->eta() << ", hits= " << trk3->numberOfValidHits();
// eta and pt cut
if (fabs(trk3->eta()) > maxEta_)
continue;
if (trk3->pt() < minPt_)
continue;
FreeTrajectoryState InitialFTS_Trk3 = initialFreeState(*trk3, magField);
TrajectoryStateClosestToBeamLine tscb_Trk3(blsBuilder(InitialFTS_Trk3, *recoBeamSpotHandle));
double d0sigTrk3 = tscb_Trk3.transverseImpactParameter().significance();
if (d0sigTrk3 < minD0Significance_)
continue;
//loop on track collection - trk2
for (trkcand2 = trkcands->begin(); trkcand2 != trkcands->end(); ++trkcand2) {
TrackRef trk4 = trkcand2->get<TrackRef>();
if (oppositeSign_) {
if (trk3->charge() * trk4->charge() != -1)
continue;
}
if (overlap(trk1, trk4))
continue;
if (overlap(trk2, trk4))
continue;
if (overlap(trk3, trk4))
continue;
LogDebug("HLTDisplacedMumukFilter") << " 4th track: q*pt= " << trk4->charge() * trk4->pt()
<< ", eta= " << trk4->eta() << ", hits= " << trk4->numberOfValidHits();
// eta and pt cut
if (fabs(trk4->eta()) > maxEta_)
continue;
if (trk4->pt() < minPt_)
continue;
FreeTrajectoryState InitialFTS_Trk4 = initialFreeState(*trk4, magField);
TrajectoryStateClosestToBeamLine tscb_Trk4(blsBuilder(InitialFTS_Trk4, *recoBeamSpotHandle));
double d0sigTrk4 = tscb_Trk4.transverseImpactParameter().significance();
if (d0sigTrk4 < minD0Significance_)
continue;
// Combined system
e1 = sqrt(trk1->momentum().Mag2() + MuMass2);
e2 = sqrt(trk2->momentum().Mag2() + MuMass2);
e3_m3 = sqrt(trk3->momentum().Mag2() + thirdTrackMass2);
e3_m4 = sqrt(trk3->momentum().Mag2() + fourthTrackMass2);
e4_m3 = sqrt(trk4->momentum().Mag2() + thirdTrackMass2);
e4_m4 = sqrt(trk4->momentum().Mag2() + fourthTrackMass2);
p1 = Particle::LorentzVector(trk1->px(), trk1->py(), trk1->pz(), e1);
p2 = Particle::LorentzVector(trk2->px(), trk2->py(), trk2->pz(), e2);
p3_m3 = Particle::LorentzVector(trk3->px(), trk3->py(), trk3->pz(), e3_m3);
p3_m4 = Particle::LorentzVector(trk3->px(), trk3->py(), trk3->pz(), e3_m4);
p4_m3 = Particle::LorentzVector(trk4->px(), trk4->py(), trk4->pz(), e4_m3);
p4_m4 = Particle::LorentzVector(trk4->px(), trk4->py(), trk4->pz(), e4_m4);
p = p1 + p2 + p3_m3 + p4_m4;
pBar = p1 + p2 + p3_m4 + p4_m3;
p_m3m4 = p3_m3 + p4_m4;
p_m4m3 = p3_m4 + p4_m3;
//invariant mass cut
if (!((p_m3m4.mass() > minTrkTrkMass_ && p_m3m4.mass() < maxTrkTrkMass_) ||
(p_m4m3.mass() > minTrkTrkMass_ && p_m4m3.mass() < maxTrkTrkMass_)))
continue;
if (!((p.mass() > minInvMass_ && p.mass() < maxInvMass_) ||
(pBar.mass() > minInvMass_ && pBar.mass() < maxInvMass_)))
continue;
// do the vertex fit
vector<TransientTrack> t_tks;
t_tks.push_back((*theB).build(&trk1));
t_tks.push_back((*theB).build(&trk2));
t_tks.push_back((*theB).build(&trk3));
t_tks.push_back((*theB).build(&trk4));
if (t_tks.size() != 4)
continue;
KalmanVertexFitter kvf;
TransientVertex tv = kvf.vertex(t_tks);
if (!tv.isValid())
continue;
Vertex vertex = tv;
vertexCollection->push_back(vertex);
}
}
}
}
iEvent.put(std::move(vertexCollection));
}
FreeTrajectoryState HLTmumutktkVtxProducer::initialFreeState(const reco::Track& tk, const MagneticField* field) {
Basic3DVector<float> pos(tk.vertex());
GlobalPoint gpos(pos);
Basic3DVector<float> mom(tk.momentum());
GlobalVector gmom(mom);
GlobalTrajectoryParameters par(gpos, gmom, tk.charge(), field);
CurvilinearTrajectoryError err(tk.covariance());
return FreeTrajectoryState(par, err);
}
bool HLTmumutktkVtxProducer::overlap(const TrackRef& trackref1, const TrackRef& trackref2) {
return (reco::deltaR2(trackref1->eta(), trackref1->phi(), trackref2->eta(), trackref2->phi()) < overlapDR2_);
}
bool HLTmumutktkVtxProducer::checkPreviousCand(const TrackRef& trackref,
const vector<RecoChargedCandidateRef>& refVect) const {
bool ok = false;
for (auto& i : refVect) {
if (i->get<TrackRef>() == trackref) {
ok = true;
break;
}
}
return ok;
}
|