Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
#include "HeavyFlavorAnalysis/Onia2MuMu/interface/Onia2MuMuPAT.h"

//Headers for the data items
#include <DataFormats/TrackReco/interface/TrackFwd.h>
#include <DataFormats/TrackReco/interface/Track.h>
#include <DataFormats/MuonReco/interface/MuonFwd.h>
#include <DataFormats/MuonReco/interface/Muon.h>
#include <DataFormats/Common/interface/View.h>
#include <DataFormats/HepMCCandidate/interface/GenParticle.h>
#include <DataFormats/PatCandidates/interface/Muon.h>
#include <DataFormats/VertexReco/interface/VertexFwd.h>

//Headers for services and tools
#include "RecoVertex/KalmanVertexFit/interface/KalmanVertexFitter.h"
#include "RecoVertex/VertexTools/interface/VertexDistanceXY.h"
#include "TMath.h"
#include "Math/VectorUtil.h"
#include "TVector3.h"
#include "HeavyFlavorAnalysis/Onia2MuMu/interface/OniaVtxReProducer.h"

#include "TrackingTools/PatternTools/interface/TwoTrackMinimumDistance.h"
#include "TrackingTools/IPTools/interface/IPTools.h"
#include "TrackingTools/PatternTools/interface/ClosestApproachInRPhi.h"
#include "TrackingTools/Records/interface/TransientTrackRecord.h"

Onia2MuMuPAT::Onia2MuMuPAT(const edm::ParameterSet &iConfig)
    : muons_(consumes<edm::View<pat::Muon>>(iConfig.getParameter<edm::InputTag>("muons"))),
      thebeamspot_(consumes<reco::BeamSpot>(iConfig.getParameter<edm::InputTag>("beamSpotTag"))),
      thePVs_(consumes<reco::VertexCollection>(iConfig.getParameter<edm::InputTag>("primaryVertexTag"))),
      magneticFieldToken_(esConsumes<MagneticField, IdealMagneticFieldRecord>()),
      theTTBuilderToken_(
          esConsumes<TransientTrackBuilder, TransientTrackRecord>(edm::ESInputTag("", "TransientTrackBuilder"))),
      higherPuritySelection_(iConfig.getParameter<std::string>("higherPuritySelection")),
      lowerPuritySelection_(iConfig.getParameter<std::string>("lowerPuritySelection")),
      dimuonSelection_(iConfig.getParameter<std::string>("dimuonSelection")),
      addCommonVertex_(iConfig.getParameter<bool>("addCommonVertex")),
      addMuonlessPrimaryVertex_(iConfig.getParameter<bool>("addMuonlessPrimaryVertex")),
      resolveAmbiguity_(iConfig.getParameter<bool>("resolvePileUpAmbiguity")),
      addMCTruth_(iConfig.getParameter<bool>("addMCTruth")) {
  revtxtrks_ = consumes<reco::TrackCollection>(
      (edm::InputTag) "generalTracks");  //if that is not true, we will raise an exception
  revtxbs_ = consumes<reco::BeamSpot>((edm::InputTag) "offlineBeamSpot");
  produces<pat::CompositeCandidateCollection>();
}

//
// member functions
//

// ------------ method called to produce the data  ------------
void Onia2MuMuPAT::produce(edm::Event &iEvent, const edm::EventSetup &iSetup) {
  using namespace edm;
  using namespace std;
  using namespace reco;
  typedef Candidate::LorentzVector LorentzVector;

  vector<double> muMasses;
  muMasses.push_back(0.1056583715);
  muMasses.push_back(0.1056583715);

  std::unique_ptr<pat::CompositeCandidateCollection> oniaOutput(new pat::CompositeCandidateCollection);

  Vertex thePrimaryV;
  Vertex theBeamSpotV;

  const MagneticField &field = iSetup.getData(magneticFieldToken_);

  Handle<BeamSpot> theBeamSpot;
  iEvent.getByToken(thebeamspot_, theBeamSpot);
  BeamSpot bs = *theBeamSpot;
  theBeamSpotV = Vertex(bs.position(), bs.covariance3D());

  Handle<VertexCollection> priVtxs;
  iEvent.getByToken(thePVs_, priVtxs);
  if (priVtxs->begin() != priVtxs->end()) {
    thePrimaryV = Vertex(*(priVtxs->begin()));
  } else {
    thePrimaryV = Vertex(bs.position(), bs.covariance3D());
  }

  Handle<View<pat::Muon>> muons;
  iEvent.getByToken(muons_, muons);

  edm::ESHandle<TransientTrackBuilder> theTTBuilder = iSetup.getHandle(theTTBuilderToken_);
  KalmanVertexFitter vtxFitter(true);
  TrackCollection muonLess;

  // JPsi candidates only from muons
  for (View<pat::Muon>::const_iterator it = muons->begin(), itend = muons->end(); it != itend; ++it) {
    // both must pass low quality
    if (!lowerPuritySelection_(*it))
      continue;
    for (View<pat::Muon>::const_iterator it2 = it + 1; it2 != itend; ++it2) {
      // both must pass low quality
      if (!lowerPuritySelection_(*it2))
        continue;
      // one must pass tight quality
      if (!(higherPuritySelection_(*it) || higherPuritySelection_(*it2)))
        continue;

      pat::CompositeCandidate myCand;
      vector<TransientVertex> pvs;

      // ---- no explicit order defined ----
      myCand.addDaughter(*it, "muon1");
      myCand.addDaughter(*it2, "muon2");

      // ---- define and set candidate's 4momentum  ----
      LorentzVector jpsi = it->p4() + it2->p4();
      myCand.setP4(jpsi);
      myCand.setCharge(it->charge() + it2->charge());

      // ---- apply the dimuon cut ----
      if (!dimuonSelection_(myCand))
        continue;

      // ---- fit vertex using Tracker tracks (if they have tracks) ----
      if (it->track().isNonnull() && it2->track().isNonnull()) {
        //build the dimuon secondary vertex
        vector<TransientTrack> t_tks;
        t_tks.push_back(theTTBuilder->build(
            *it->track()));  // pass the reco::Track, not  the reco::TrackRef (which can be transient)
        t_tks.push_back(theTTBuilder->build(*it2->track()));  // otherwise the vertex will have transient refs inside.
        TransientVertex myVertex = vtxFitter.vertex(t_tks);

        CachingVertex<5> VtxForInvMass = vtxFitter.vertex(t_tks);

        Measurement1D MassWErr(jpsi.M(), -9999.);
        if (field.nominalValue() > 0) {
          MassWErr = massCalculator.invariantMass(VtxForInvMass, muMasses);
        } else {
          myVertex = TransientVertex();  // with no arguments it is invalid
        }

        myCand.addUserFloat("MassErr", MassWErr.error());

        if (myVertex.isValid()) {
          float vChi2 = myVertex.totalChiSquared();
          float vNDF = myVertex.degreesOfFreedom();
          float vProb(TMath::Prob(vChi2, (int)vNDF));

          myCand.addUserFloat("vNChi2", vChi2 / vNDF);
          myCand.addUserFloat("vProb", vProb);

          TVector3 vtx;
          TVector3 pvtx;
          VertexDistanceXY vdistXY;

          vtx.SetXYZ(myVertex.position().x(), myVertex.position().y(), 0);
          TVector3 pperp(jpsi.px(), jpsi.py(), 0);
          AlgebraicVector3 vpperp(pperp.x(), pperp.y(), 0);

          if (resolveAmbiguity_) {
            float minDz = 999999.;
            TwoTrackMinimumDistance ttmd;
            bool status = ttmd.calculate(
                GlobalTrajectoryParameters(
                    GlobalPoint(myVertex.position().x(), myVertex.position().y(), myVertex.position().z()),
                    GlobalVector(myCand.px(), myCand.py(), myCand.pz()),
                    TrackCharge(0),
                    &(field)),
                GlobalTrajectoryParameters(GlobalPoint(bs.position().x(), bs.position().y(), bs.position().z()),
                                           GlobalVector(bs.dxdz(), bs.dydz(), 1.),
                                           TrackCharge(0),
                                           &(field)));
            float extrapZ = -9E20;
            if (status)
              extrapZ = ttmd.points().first.z();

            for (VertexCollection::const_iterator itv = priVtxs->begin(), itvend = priVtxs->end(); itv != itvend;
                 ++itv) {
              float deltaZ = fabs(extrapZ - itv->position().z());
              if (deltaZ < minDz) {
                minDz = deltaZ;
                thePrimaryV = Vertex(*itv);
              }
            }
          }

          Vertex theOriginalPV = thePrimaryV;

          muonLess.clear();
          muonLess.reserve(thePrimaryV.tracksSize());
          if (addMuonlessPrimaryVertex_ && thePrimaryV.tracksSize() > 2) {
            // Primary vertex matched to the dimuon, now refit it removing the two muons
            OniaVtxReProducer revertex(priVtxs, iEvent);
            edm::Handle<reco::TrackCollection> pvtracks;
            iEvent.getByToken(revtxtrks_, pvtracks);
            if (!pvtracks.isValid()) {
              std::cout << "pvtracks NOT valid " << std::endl;
            } else {
              edm::Handle<reco::BeamSpot> pvbeamspot;
              iEvent.getByToken(revtxbs_, pvbeamspot);
              if (pvbeamspot.id() != theBeamSpot.id())
                edm::LogWarning("Inconsistency")
                    << "The BeamSpot used for PV reco is not the same used in this analyzer.";
              // I need to go back to the reco::Muon object, as the TrackRef in the pat::Muon can be an embedded ref.
              const reco::Muon *rmu1 = dynamic_cast<const reco::Muon *>(it->originalObject());
              const reco::Muon *rmu2 = dynamic_cast<const reco::Muon *>(it2->originalObject());
              // check that muons are truly from reco::Muons (and not, e.g., from PF Muons)
              // also check that the tracks really come from the track collection used for the BS
              if (rmu1 != nullptr && rmu2 != nullptr && rmu1->track().id() == pvtracks.id() &&
                  rmu2->track().id() == pvtracks.id()) {
                // Save the keys of the tracks in the primary vertex
                // std::vector<size_t> vertexTracksKeys;
                // vertexTracksKeys.reserve(thePrimaryV.tracksSize());
                if (thePrimaryV.hasRefittedTracks()) {
                  // Need to go back to the original tracks before taking the key
                  std::vector<reco::Track>::const_iterator itRefittedTrack = thePrimaryV.refittedTracks().begin();
                  std::vector<reco::Track>::const_iterator refittedTracksEnd = thePrimaryV.refittedTracks().end();
                  for (; itRefittedTrack != refittedTracksEnd; ++itRefittedTrack) {
                    if (thePrimaryV.originalTrack(*itRefittedTrack).key() == rmu1->track().key())
                      continue;
                    if (thePrimaryV.originalTrack(*itRefittedTrack).key() == rmu2->track().key())
                      continue;
                    // vertexTracksKeys.push_back(thePrimaryV.originalTrack(*itRefittedTrack).key());
                    muonLess.push_back(*(thePrimaryV.originalTrack(*itRefittedTrack)));
                  }
                } else {
                  std::vector<reco::TrackBaseRef>::const_iterator itPVtrack = thePrimaryV.tracks_begin();
                  for (; itPVtrack != thePrimaryV.tracks_end(); ++itPVtrack)
                    if (itPVtrack->isNonnull()) {
                      if (itPVtrack->key() == rmu1->track().key())
                        continue;
                      if (itPVtrack->key() == rmu2->track().key())
                        continue;
                      // vertexTracksKeys.push_back(itPVtrack->key());
                      muonLess.push_back(**itPVtrack);
                    }
                }
                if (muonLess.size() > 1 && muonLess.size() < thePrimaryV.tracksSize()) {
                  pvs = revertex.makeVertices(muonLess, *pvbeamspot, *theTTBuilder);
                  if (!pvs.empty()) {
                    Vertex muonLessPV = Vertex(pvs.front());
                    thePrimaryV = muonLessPV;
                  }
                }
              }
            }
          }

          // count the number of high Purity tracks with pT > 900 MeV attached to the chosen vertex
          double vertexWeight = -1., sumPTPV = -1.;
          int countTksOfPV = -1;
          const reco::Muon *rmu1 = dynamic_cast<const reco::Muon *>(it->originalObject());
          const reco::Muon *rmu2 = dynamic_cast<const reco::Muon *>(it2->originalObject());
          try {
            for (reco::Vertex::trackRef_iterator itVtx = theOriginalPV.tracks_begin();
                 itVtx != theOriginalPV.tracks_end();
                 itVtx++)
              if (itVtx->isNonnull()) {
                const reco::Track &track = **itVtx;
                if (!track.quality(reco::TrackBase::highPurity))
                  continue;
                if (track.pt() < 0.5)
                  continue;  //reject all rejects from counting if less than 900 MeV
                TransientTrack tt = theTTBuilder->build(track);
                pair<bool, Measurement1D> tkPVdist = IPTools::absoluteImpactParameter3D(tt, thePrimaryV);
                if (!tkPVdist.first)
                  continue;
                if (tkPVdist.second.significance() > 3)
                  continue;
                if (track.ptError() / track.pt() > 0.1)
                  continue;
                // do not count the two muons
                if (rmu1 != nullptr && rmu1->innerTrack().key() == itVtx->key())
                  continue;
                if (rmu2 != nullptr && rmu2->innerTrack().key() == itVtx->key())
                  continue;

                vertexWeight += theOriginalPV.trackWeight(*itVtx);
                if (theOriginalPV.trackWeight(*itVtx) > 0.5) {
                  countTksOfPV++;
                  sumPTPV += track.pt();
                }
              }
          } catch (std::exception &err) {
            std::cout << " muon Selection%G�%@failed " << std::endl;
            return;
          }

          myCand.addUserInt("countTksOfPV", countTksOfPV);
          myCand.addUserFloat("vertexWeight", (float)vertexWeight);
          myCand.addUserFloat("sumPTPV", (float)sumPTPV);

          ///DCA
          TrajectoryStateClosestToPoint mu1TS = t_tks[0].impactPointTSCP();
          TrajectoryStateClosestToPoint mu2TS = t_tks[1].impactPointTSCP();
          float dca = 1E20;
          if (mu1TS.isValid() && mu2TS.isValid()) {
            ClosestApproachInRPhi cApp;
            cApp.calculate(mu1TS.theState(), mu2TS.theState());
            if (cApp.status())
              dca = cApp.distance();
          }
          myCand.addUserFloat("DCA", dca);
          ///end DCA

          if (addMuonlessPrimaryVertex_)
            myCand.addUserData("muonlessPV", Vertex(thePrimaryV));
          else
            myCand.addUserData("PVwithmuons", thePrimaryV);

          // lifetime using PV
          pvtx.SetXYZ(thePrimaryV.position().x(), thePrimaryV.position().y(), 0);
          TVector3 vdiff = vtx - pvtx;
          double cosAlpha = vdiff.Dot(pperp) / (vdiff.Perp() * pperp.Perp());
          Measurement1D distXY = vdistXY.distance(Vertex(myVertex), thePrimaryV);
          //double ctauPV = distXY.value()*cosAlpha*3.09688/pperp.Perp();
          double ctauPV = distXY.value() * cosAlpha * myCand.mass() / pperp.Perp();
          GlobalError v1e = (Vertex(myVertex)).error();
          GlobalError v2e = thePrimaryV.error();
          AlgebraicSymMatrix33 vXYe = v1e.matrix() + v2e.matrix();
          //double ctauErrPV = sqrt(vXYe.similarity(vpperp))*3.09688/(pperp.Perp2());
          double ctauErrPV = sqrt(ROOT::Math::Similarity(vpperp, vXYe)) * myCand.mass() / (pperp.Perp2());

          myCand.addUserFloat("ppdlPV", ctauPV);
          myCand.addUserFloat("ppdlErrPV", ctauErrPV);
          myCand.addUserFloat("cosAlpha", cosAlpha);

          // lifetime using BS
          pvtx.SetXYZ(theBeamSpotV.position().x(), theBeamSpotV.position().y(), 0);
          vdiff = vtx - pvtx;
          cosAlpha = vdiff.Dot(pperp) / (vdiff.Perp() * pperp.Perp());
          distXY = vdistXY.distance(Vertex(myVertex), theBeamSpotV);
          //double ctauBS = distXY.value()*cosAlpha*3.09688/pperp.Perp();
          double ctauBS = distXY.value() * cosAlpha * myCand.mass() / pperp.Perp();
          GlobalError v1eB = (Vertex(myVertex)).error();
          GlobalError v2eB = theBeamSpotV.error();
          AlgebraicSymMatrix33 vXYeB = v1eB.matrix() + v2eB.matrix();
          //double ctauErrBS = sqrt(vXYeB.similarity(vpperp))*3.09688/(pperp.Perp2());
          double ctauErrBS = sqrt(ROOT::Math::Similarity(vpperp, vXYeB)) * myCand.mass() / (pperp.Perp2());

          myCand.addUserFloat("ppdlBS", ctauBS);
          myCand.addUserFloat("ppdlErrBS", ctauErrBS);

          if (addCommonVertex_) {
            myCand.addUserData("commonVertex", Vertex(myVertex));
          }
        } else {
          myCand.addUserFloat("vNChi2", -1);
          myCand.addUserFloat("vProb", -1);
          myCand.addUserFloat("ppdlPV", -100);
          myCand.addUserFloat("ppdlErrPV", -100);
          myCand.addUserFloat("cosAlpha", -100);
          myCand.addUserFloat("ppdlBS", -100);
          myCand.addUserFloat("ppdlErrBS", -100);
          myCand.addUserFloat("DCA", -1);
          if (addCommonVertex_) {
            myCand.addUserData("commonVertex", Vertex());
          }
          if (addMuonlessPrimaryVertex_) {
            myCand.addUserData("muonlessPV", Vertex());
          } else {
            myCand.addUserData("PVwithmuons", Vertex());
          }
        }
      }

      // ---- MC Truth, if enabled ----
      if (addMCTruth_) {
        reco::GenParticleRef genMu1 = it->genParticleRef();
        reco::GenParticleRef genMu2 = it2->genParticleRef();
        if (genMu1.isNonnull() && genMu2.isNonnull()) {
          if (genMu1->numberOfMothers() > 0 && genMu2->numberOfMothers() > 0) {
            reco::GenParticleRef mom1 = genMu1->motherRef();
            reco::GenParticleRef mom2 = genMu2->motherRef();
            if (mom1.isNonnull() && (mom1 == mom2)) {
              myCand.setGenParticleRef(mom1);  // set
              myCand.embedGenParticle();       // and embed
              std::pair<int, float> MCinfo = findJpsiMCInfo(mom1);
              myCand.addUserInt("momPDGId", MCinfo.first);
              myCand.addUserFloat("ppdlTrue", MCinfo.second);
            } else {
              myCand.addUserInt("momPDGId", 0);
              myCand.addUserFloat("ppdlTrue", -99.);
            }
          } else {
            edm::Handle<reco::GenParticleCollection> theGenParticles;
            edm::EDGetTokenT<reco::GenParticleCollection> genCands_ =
                consumes<reco::GenParticleCollection>((edm::InputTag) "genParticles");
            iEvent.getByToken(genCands_, theGenParticles);
            if (theGenParticles.isValid()) {
              for (size_t iGenParticle = 0; iGenParticle < theGenParticles->size(); ++iGenParticle) {
                const Candidate &genCand = (*theGenParticles)[iGenParticle];
                if (genCand.pdgId() == 443 || genCand.pdgId() == 100443 || genCand.pdgId() == 553 ||
                    genCand.pdgId() == 100553 || genCand.pdgId() == 200553) {
                  reco::GenParticleRef mom1(theGenParticles, iGenParticle);
                  myCand.setGenParticleRef(mom1);
                  myCand.embedGenParticle();
                  std::pair<int, float> MCinfo = findJpsiMCInfo(mom1);
                  myCand.addUserInt("momPDGId", MCinfo.first);
                  myCand.addUserFloat("ppdlTrue", MCinfo.second);
                }
              }
            } else {
              myCand.addUserInt("momPDGId", 0);
              myCand.addUserFloat("ppdlTrue", -99.);
            }
          }
        } else {
          myCand.addUserInt("momPDGId", 0);
          myCand.addUserFloat("ppdlTrue", -99.);
        }
      }

      // ---- Push back output ----
      oniaOutput->push_back(myCand);
    }
  }

  std::sort(oniaOutput->begin(), oniaOutput->end(), vPComparator_);

  iEvent.put(std::move(oniaOutput));
}

bool Onia2MuMuPAT::isAbHadron(int pdgID) const {
  if (abs(pdgID) == 511 || abs(pdgID) == 521 || abs(pdgID) == 531 || abs(pdgID) == 5122)
    return true;
  return false;
}

bool Onia2MuMuPAT::isAMixedbHadron(int pdgID, int momPdgID) const {
  if ((abs(pdgID) == 511 && abs(momPdgID) == 511 && pdgID * momPdgID < 0) ||
      (abs(pdgID) == 531 && abs(momPdgID) == 531 && pdgID * momPdgID < 0))
    return true;
  return false;
}

std::pair<int, float> Onia2MuMuPAT::findJpsiMCInfo(reco::GenParticleRef genJpsi) const {
  int momJpsiID = 0;
  float trueLife = -99.;

  if (genJpsi->numberOfMothers() > 0) {
    TVector3 trueVtx(0.0, 0.0, 0.0);
    TVector3 trueP(0.0, 0.0, 0.0);
    TVector3 trueVtxMom(0.0, 0.0, 0.0);

    trueVtx.SetXYZ(genJpsi->vertex().x(), genJpsi->vertex().y(), genJpsi->vertex().z());
    trueP.SetXYZ(genJpsi->momentum().x(), genJpsi->momentum().y(), genJpsi->momentum().z());

    bool aBhadron = false;
    reco::GenParticleRef Jpsimom = genJpsi->motherRef();  // find mothers
    if (Jpsimom.isNull()) {
      std::pair<int, float> result = std::make_pair(momJpsiID, trueLife);
      return result;
    } else {
      reco::GenParticleRef Jpsigrandmom = Jpsimom->motherRef();
      if (isAbHadron(Jpsimom->pdgId())) {
        if (Jpsigrandmom.isNonnull() && isAMixedbHadron(Jpsimom->pdgId(), Jpsigrandmom->pdgId())) {
          momJpsiID = Jpsigrandmom->pdgId();
          trueVtxMom.SetXYZ(Jpsigrandmom->vertex().x(), Jpsigrandmom->vertex().y(), Jpsigrandmom->vertex().z());
        } else {
          momJpsiID = Jpsimom->pdgId();
          trueVtxMom.SetXYZ(Jpsimom->vertex().x(), Jpsimom->vertex().y(), Jpsimom->vertex().z());
        }
        aBhadron = true;
      } else {
        if (Jpsigrandmom.isNonnull() && isAbHadron(Jpsigrandmom->pdgId())) {
          reco::GenParticleRef JpsiGrandgrandmom = Jpsigrandmom->motherRef();
          if (JpsiGrandgrandmom.isNonnull() && isAMixedbHadron(Jpsigrandmom->pdgId(), JpsiGrandgrandmom->pdgId())) {
            momJpsiID = JpsiGrandgrandmom->pdgId();
            trueVtxMom.SetXYZ(
                JpsiGrandgrandmom->vertex().x(), JpsiGrandgrandmom->vertex().y(), JpsiGrandgrandmom->vertex().z());
          } else {
            momJpsiID = Jpsigrandmom->pdgId();
            trueVtxMom.SetXYZ(Jpsigrandmom->vertex().x(), Jpsigrandmom->vertex().y(), Jpsigrandmom->vertex().z());
          }
          aBhadron = true;
        }
      }
      if (!aBhadron) {
        momJpsiID = Jpsimom->pdgId();
        trueVtxMom.SetXYZ(Jpsimom->vertex().x(), Jpsimom->vertex().y(), Jpsimom->vertex().z());
      }
    }

    TVector3 vdiff = trueVtx - trueVtxMom;
    //trueLife = vdiff.Perp()*3.09688/trueP.Perp();
    trueLife = vdiff.Perp() * genJpsi->mass() / trueP.Perp();
  }
  std::pair<int, float> result = std::make_pair(momJpsiID, trueLife);
  return result;
}

void Onia2MuMuPAT::fillDescriptions(edm::ConfigurationDescriptions &iDescriptions) {
  edm::ParameterSetDescription desc;
  desc.add<edm::InputTag>("muons");
  desc.add<edm::InputTag>("beamSpotTag");
  desc.add<edm::InputTag>("primaryVertexTag");
  desc.add<std::string>("higherPuritySelection");
  desc.add<std::string>("lowerPuritySelection");
  desc.add<std::string>("dimuonSelection", "");
  desc.add<bool>("addCommonVertex");
  desc.add<bool>("addMuonlessPrimaryVertex");
  desc.add<bool>("resolvePileUpAmbiguity");
  desc.add<bool>("addMCTruth");

  iDescriptions.addDefault(desc);
}

//define this as a plug-in
DEFINE_FWK_MODULE(Onia2MuMuPAT);