1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
|
#include "HeavyFlavorAnalysis/Onia2MuMu/interface/OniaPhotonConversionProducer.h"
#include "DataFormats/EgammaCandidates/interface/Conversion.h"
#include "DataFormats/PatCandidates/interface/CompositeCandidate.h"
#include "DataFormats/ParticleFlowCandidate/interface/PFCandidateFwd.h"
#include "DataFormats/ParticleFlowCandidate/interface/PFCandidate.h"
#include "DataFormats/TrackReco/interface/Track.h"
#include "DataFormats/TrackReco/interface/TrackBase.h"
#include "CommonTools/Utils/interface/StringToEnumValue.h"
#include "CommonTools/Statistics/interface/ChiSquaredProbability.h"
#include "RecoVertex/VertexTools/interface/VertexDistanceXY.h"
#include "DataFormats/VertexReco/interface/VertexFwd.h"
#include "CommonTools/Statistics/interface/ChiSquaredProbability.h"
#include <TMath.h>
#include <vector>
// to order from high to low ProbChi2
bool ConversionLessByChi2(const reco::Conversion& c1, const reco::Conversion& c2) {
return TMath::Prob(c1.conversionVertex().chi2(), c1.conversionVertex().ndof()) >
TMath::Prob(c2.conversionVertex().chi2(), c2.conversionVertex().ndof());
}
bool ConversionEqualByTrack(const reco::Conversion& c1, const reco::Conversion& c2) {
bool atLeastOneInCommon = false;
for (auto const& tk1 : c1.tracks()) {
for (auto const& tk2 : c2.tracks()) {
if (tk1 == tk2) {
atLeastOneInCommon = true;
break;
}
}
}
return atLeastOneInCommon;
}
bool lt_(std::pair<double, short> a, std::pair<double, short> b) { return a.first < b.first; }
// define operator== for conversions, those with at least one track in common
namespace reco {
bool operator==(const reco::Conversion& c1, const reco::Conversion& c2) {
return c1.tracks()[0] == c2.tracks()[0] || c1.tracks()[1] == c2.tracks()[1] || c1.tracks()[1] == c2.tracks()[0] ||
c1.tracks()[0] == c2.tracks()[1];
}
} // namespace reco
OniaPhotonConversionProducer::OniaPhotonConversionProducer(const edm::ParameterSet& ps) {
convCollectionToken_ = consumes<reco::ConversionCollection>(ps.getParameter<edm::InputTag>("conversions"));
thePVsToken_ = consumes<reco::VertexCollection>(ps.getParameter<edm::InputTag>("primaryVertexTag"));
wantTkVtxCompatibility_ = ps.getParameter<bool>("wantTkVtxCompatibility");
sigmaTkVtxComp_ = ps.getParameter<uint32_t>("sigmaTkVtxComp");
wantCompatibleInnerHits_ = ps.getParameter<bool>("wantCompatibleInnerHits");
TkMinNumOfDOF_ = ps.getParameter<uint32_t>("TkMinNumOfDOF");
wantHighpurity_ = ps.getParameter<bool>("wantHighpurity");
_vertexChi2ProbCut = ps.getParameter<double>("vertexChi2ProbCut");
_trackchi2Cut = ps.getParameter<double>("trackchi2Cut");
_minDistanceOfApproachMinCut = ps.getParameter<double>("minDistanceOfApproachMinCut");
_minDistanceOfApproachMaxCut = ps.getParameter<double>("minDistanceOfApproachMaxCut");
pfCandidateCollectionToken_ = consumes<reco::PFCandidateCollection>(ps.getParameter<edm::InputTag>("pfcandidates"));
pi0OnlineSwitch_ = ps.getParameter<bool>("pi0OnlineSwitch");
pi0SmallWindow_ = ps.getParameter<std::vector<double>>("pi0SmallWindow");
pi0LargeWindow_ = ps.getParameter<std::vector<double>>("pi0LargeWindow");
std::string algo = ps.getParameter<std::string>("convAlgo");
convAlgo_ = StringToEnumValue<reco::Conversion::ConversionAlgorithm>(algo);
std::vector<std::string> qual = ps.getParameter<std::vector<std::string>>("convQuality");
if (!qual[0].empty())
convQuality_ = StringToEnumValue<reco::Conversion::ConversionQuality>(qual);
convSelectionCuts_ = ps.getParameter<std::string>("convSelection");
convSelection_ = std::make_unique<StringCutObjectSelector<reco::Conversion>>(convSelectionCuts_);
produces<pat::CompositeCandidateCollection>("conversions");
}
void OniaPhotonConversionProducer::produce(edm::Event& event, const edm::EventSetup& esetup) {
std::unique_ptr<reco::ConversionCollection> outCollection(new reco::ConversionCollection);
std::unique_ptr<pat::CompositeCandidateCollection> patoutCollection(new pat::CompositeCandidateCollection);
edm::Handle<reco::VertexCollection> priVtxs;
event.getByToken(thePVsToken_, priVtxs);
edm::Handle<reco::ConversionCollection> pConv;
event.getByToken(convCollectionToken_, pConv);
edm::Handle<reco::PFCandidateCollection> pfcandidates;
event.getByToken(pfCandidateCollectionToken_, pfcandidates);
const reco::PFCandidateCollection pfphotons = selectPFPhotons(*pfcandidates);
for (reco::ConversionCollection::const_iterator conv = pConv->begin(); conv != pConv->end(); ++conv) {
if (!(*convSelection_)(*conv)) {
continue; // selection string
}
if (convAlgo_ != 0 && conv->algo() != convAlgo_) {
continue; // select algorithm
}
if (!convQuality_.empty()) {
bool flagsok = true;
for (std::vector<int>::const_iterator flag = convQuality_.begin(); flag != convQuality_.end(); ++flag) {
reco::Conversion::ConversionQuality q = (reco::Conversion::ConversionQuality)(*flag);
if (!conv->quality(q)) {
flagsok = false;
break;
}
}
if (!flagsok) {
continue;
}
}
outCollection->push_back(*conv);
}
removeDuplicates(*outCollection);
for (reco::ConversionCollection::const_iterator conv = outCollection->begin(); conv != outCollection->end(); ++conv) {
bool flag1 = true;
bool flag2 = true;
bool flag3 = true;
bool flag4 = true;
// The logic implies that by default this flags are true and if the check are not wanted conversions are saved.
// If checks are required and failed then don't save the conversion.
bool flagTkVtxCompatibility = true;
if (!checkTkVtxCompatibility(*conv, *priVtxs.product())) {
flagTkVtxCompatibility = false;
if (wantTkVtxCompatibility_) {
flag1 = false;
}
}
bool flagCompatibleInnerHits = false;
if (conv->tracks().size() == 2) {
reco::HitPattern hitPatA = conv->tracks().at(0)->hitPattern();
reco::HitPattern hitPatB = conv->tracks().at(1)->hitPattern();
if (foundCompatibleInnerHits(hitPatA, hitPatB) && foundCompatibleInnerHits(hitPatB, hitPatA))
flagCompatibleInnerHits = true;
}
if (wantCompatibleInnerHits_ && !flagCompatibleInnerHits) {
flag2 = false;
}
bool flagHighpurity = true;
if (!HighpuritySubset(*conv, *priVtxs.product())) {
flagHighpurity = false;
if (wantHighpurity_) {
flag3 = false;
}
}
bool pizero_rejected = false;
bool large_pizero_window = CheckPi0(*conv, pfphotons, pizero_rejected);
if (pi0OnlineSwitch_ && pizero_rejected) {
flag4 = false;
}
int flags = 0;
if (flag1 && flag2 && flag3 && flag4) {
flags = PackFlags(
*conv, flagTkVtxCompatibility, flagCompatibleInnerHits, flagHighpurity, pizero_rejected, large_pizero_window);
std::unique_ptr<pat::CompositeCandidate> pat_conv(makePhotonCandidate(*conv));
pat_conv->addUserInt("flags", flags);
patoutCollection->push_back(*pat_conv);
}
}
event.put(std::move(patoutCollection), "conversions");
}
int OniaPhotonConversionProducer::PackFlags(const reco::Conversion& conv,
bool flagTkVtxCompatibility,
bool flagCompatibleInnerHits,
bool flagHighpurity,
bool pizero_rejected,
bool large_pizero_window) {
int flags = 0;
if (flagTkVtxCompatibility)
flags += 1;
if (flagCompatibleInnerHits)
flags += 2;
if (flagHighpurity)
flags += 4;
if (pizero_rejected)
flags += 8;
if (large_pizero_window)
flags += 16;
flags += (conv.algo() * 32);
int q_mask = 0;
std::vector<std::string> s_quals;
s_quals.push_back("generalTracksOnly");
s_quals.push_back("arbitratedEcalSeeded");
s_quals.push_back("arbitratedMerged");
s_quals.push_back("arbitratedMergedEcalGeneral");
s_quals.push_back("highPurity");
s_quals.push_back("highEfficiency");
s_quals.push_back("ecalMatched1Track");
s_quals.push_back("ecalMatched2Track");
std::vector<int> i_quals = StringToEnumValue<reco::Conversion::ConversionQuality>(s_quals);
for (std::vector<int>::const_iterator qq = i_quals.begin(); qq != i_quals.end(); ++qq) {
reco::Conversion::ConversionQuality q = (reco::Conversion::ConversionQuality)(*qq);
if (conv.quality(q))
q_mask = *qq;
}
flags += (q_mask * 32 * 8);
return flags;
}
/** Put in out collection only those conversion candidates that are not sharing tracks.
If sharing, keep the one with the best chi2.
*/
void OniaPhotonConversionProducer::removeDuplicates(reco::ConversionCollection& c) {
// first sort from high to low chi2 prob
std::sort(c.begin(), c.end(), ConversionLessByChi2);
int iter1 = 0;
// Cycle over all the elements of the collection and compare to all the following,
// if two elements have at least one track in common delete the element with the lower chi2
while (iter1 < (((int)c.size()) - 1)) {
int iter2 = iter1 + 1;
while (iter2 < (int)c.size())
if (ConversionEqualByTrack(c[iter1], c[iter2])) {
c.erase(c.begin() + iter2);
} else {
iter2++; // Increment index only if this element is no duplicate.
// If it is duplicate check again the same index since the vector rearranged elements index after erasing
}
iter1++;
}
}
bool OniaPhotonConversionProducer::checkTkVtxCompatibility(const reco::Conversion& conv,
const reco::VertexCollection& priVtxs) {
std::vector<std::pair<double, short>> idx[2];
short ik = -1;
for (auto const& tk : conv.tracks()) {
ik++;
short count = -1;
for (auto const& vtx : priVtxs) {
count++;
double dz_ = tk->dz(vtx.position());
double dzError_ = tk->dzError();
dzError_ = sqrt(dzError_ * dzError_ + vtx.covariance(2, 2));
if (fabs(dz_) / dzError_ > sigmaTkVtxComp_)
continue;
idx[ik].push_back(std::pair<double, short>(fabs(dz_), count));
}
if (idx[ik].empty())
return false;
if (idx[ik].size() > 1)
std::stable_sort(idx[ik].begin(), idx[ik].end(), lt_);
}
if (ik != 1)
return false;
if (idx[0][0].second == idx[1][0].second)
return true;
if (idx[0].size() > 1 && idx[0][1].second == idx[1][0].second)
return true;
if (idx[1].size() > 1 && idx[0][0].second == idx[1][1].second)
return true;
return false;
}
bool OniaPhotonConversionProducer::foundCompatibleInnerHits(const reco::HitPattern& hitPatA,
const reco::HitPattern& hitPatB) {
size_t count = 0;
uint32_t oldSubStr = 0;
for (int i = 0; i < hitPatA.numberOfAllHits(reco::HitPattern::HitCategory::TRACK_HITS) && count < 2; i++) {
uint32_t hitA = hitPatA.getHitPattern(reco::HitPattern::HitCategory::TRACK_HITS, i);
if (!hitPatA.validHitFilter(hitA) || !hitPatA.trackerHitFilter(hitA))
continue;
if (hitPatA.getSubStructure(hitA) == oldSubStr && hitPatA.getLayer(hitA) == oldSubStr)
continue;
if (hitPatB.getTrackerMonoStereo(
reco::HitPattern::HitCategory::TRACK_HITS, hitPatA.getSubStructure(hitA), hitPatA.getLayer(hitA)) != 0)
return true;
oldSubStr = hitPatA.getSubStructure(hitA);
count++;
}
return false;
}
bool OniaPhotonConversionProducer::HighpuritySubset(const reco::Conversion& conv,
const reco::VertexCollection& priVtxs) {
// select high purity conversions our way:
// vertex chi2 cut
if (ChiSquaredProbability(conv.conversionVertex().chi2(), conv.conversionVertex().ndof()) < _vertexChi2ProbCut)
return false;
// d0 cut
// Find closest primary vertex
int closest_pv_index = 0;
int i = 0;
for (auto const& vtx : priVtxs) {
if (conv.zOfPrimaryVertexFromTracks(vtx.position()) <
conv.zOfPrimaryVertexFromTracks(priVtxs[closest_pv_index].position()))
closest_pv_index = i;
i++;
}
// Now check impact parameter wtr with the just found closest primary vertex
for (auto const& tk : conv.tracks())
if (-tk->dxy(priVtxs[closest_pv_index].position()) * tk->charge() / tk->dxyError() < 0)
return false;
// chi2 of single tracks
for (auto const& tk : conv.tracks())
if (tk->normalizedChi2() > _trackchi2Cut)
return false;
// dof for each track
for (auto const& tk : conv.tracks())
if (tk->ndof() < TkMinNumOfDOF_)
return false;
// distance of approach cut
if (conv.distOfMinimumApproach() < _minDistanceOfApproachMinCut ||
conv.distOfMinimumApproach() > _minDistanceOfApproachMaxCut)
return false;
return true;
}
pat::CompositeCandidate* OniaPhotonConversionProducer::makePhotonCandidate(const reco::Conversion& conv) {
pat::CompositeCandidate* photonCand = new pat::CompositeCandidate();
photonCand->setP4(convertVector(conv.refittedPair4Momentum()));
photonCand->setVertex(conv.conversionVertex().position());
photonCand->addUserData<reco::Track>("track0", *conv.tracks()[0]);
photonCand->addUserData<reco::Track>("track1", *conv.tracks()[1]);
return photonCand;
}
// create a collection of PF photons
const reco::PFCandidateCollection OniaPhotonConversionProducer::selectPFPhotons(
const reco::PFCandidateCollection& pfcandidates) {
reco::PFCandidateCollection pfphotons;
for (reco::PFCandidateCollection::const_iterator cand = pfcandidates.begin(); cand != pfcandidates.end(); ++cand) {
if (cand->particleId() == reco::PFCandidate::gamma)
pfphotons.push_back(*cand);
}
return pfphotons;
}
bool OniaPhotonConversionProducer::CheckPi0(const reco::Conversion& conv,
const reco::PFCandidateCollection& photons,
bool& pizero_rejected) {
// 2 windows are defined for Pi0 rejection, Conversions that, paired with others photons from the event, have an
// invariant mass inside the "small" window will be pizero_rejected and those that falls in the large window will
// be CheckPi0.
bool check_small = false;
bool check_large = false;
float small1 = pi0SmallWindow_[0];
float small2 = pi0SmallWindow_[1];
float large1 = pi0LargeWindow_[0];
float large2 = pi0LargeWindow_[1];
for (reco::PFCandidateCollection::const_iterator photon = photons.begin(); photon != photons.end(); ++photon) {
float inv = (conv.refittedPair4Momentum() + photon->p4()).M();
if (inv > large1 && inv < large2) {
check_large = true;
if (inv > small1 && inv < small2) {
check_small = true;
break;
}
}
}
pizero_rejected = check_small;
return check_large;
}
reco::Candidate::LorentzVector OniaPhotonConversionProducer::convertVector(const math::XYZTLorentzVectorF& v) {
return reco::Candidate::LorentzVector(v.x(), v.y(), v.z(), v.t());
}
void OniaPhotonConversionProducer::endStream() {}
//define this as a plug-in
DEFINE_FWK_MODULE(OniaPhotonConversionProducer);
|