Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
#include "HeavyFlavorAnalysis/Onia2MuMu/interface/OniaPhotonConversionProducer.h"
#include "DataFormats/EgammaCandidates/interface/Conversion.h"
#include "DataFormats/PatCandidates/interface/CompositeCandidate.h"
#include "DataFormats/ParticleFlowCandidate/interface/PFCandidateFwd.h"
#include "DataFormats/ParticleFlowCandidate/interface/PFCandidate.h"
#include "DataFormats/TrackReco/interface/Track.h"
#include "DataFormats/TrackReco/interface/TrackBase.h"

#include "CommonTools/Utils/interface/StringToEnumValue.h"
#include "CommonTools/Statistics/interface/ChiSquaredProbability.h"

#include "RecoVertex/VertexTools/interface/VertexDistanceXY.h"
#include "DataFormats/VertexReco/interface/VertexFwd.h"

#include "CommonTools/Statistics/interface/ChiSquaredProbability.h"

#include <TMath.h>
#include <vector>

// to order from high to low ProbChi2
bool ConversionLessByChi2(const reco::Conversion& c1, const reco::Conversion& c2) {
  return TMath::Prob(c1.conversionVertex().chi2(), c1.conversionVertex().ndof()) >
         TMath::Prob(c2.conversionVertex().chi2(), c2.conversionVertex().ndof());
}

bool ConversionEqualByTrack(const reco::Conversion& c1, const reco::Conversion& c2) {
  bool atLeastOneInCommon = false;
  for (auto const& tk1 : c1.tracks()) {
    for (auto const& tk2 : c2.tracks()) {
      if (tk1 == tk2) {
        atLeastOneInCommon = true;
        break;
      }
    }
  }
  return atLeastOneInCommon;
}

bool lt_(std::pair<double, short> a, std::pair<double, short> b) { return a.first < b.first; }

// define operator== for conversions, those with at least one track in common
namespace reco {
  bool operator==(const reco::Conversion& c1, const reco::Conversion& c2) {
    return c1.tracks()[0] == c2.tracks()[0] || c1.tracks()[1] == c2.tracks()[1] || c1.tracks()[1] == c2.tracks()[0] ||
           c1.tracks()[0] == c2.tracks()[1];
  }
}  // namespace reco

OniaPhotonConversionProducer::OniaPhotonConversionProducer(const edm::ParameterSet& ps) {
  convCollectionToken_ = consumes<reco::ConversionCollection>(ps.getParameter<edm::InputTag>("conversions"));
  thePVsToken_ = consumes<reco::VertexCollection>(ps.getParameter<edm::InputTag>("primaryVertexTag"));

  wantTkVtxCompatibility_ = ps.getParameter<bool>("wantTkVtxCompatibility");
  sigmaTkVtxComp_ = ps.getParameter<uint32_t>("sigmaTkVtxComp");
  wantCompatibleInnerHits_ = ps.getParameter<bool>("wantCompatibleInnerHits");
  TkMinNumOfDOF_ = ps.getParameter<uint32_t>("TkMinNumOfDOF");

  wantHighpurity_ = ps.getParameter<bool>("wantHighpurity");
  _vertexChi2ProbCut = ps.getParameter<double>("vertexChi2ProbCut");
  _trackchi2Cut = ps.getParameter<double>("trackchi2Cut");
  _minDistanceOfApproachMinCut = ps.getParameter<double>("minDistanceOfApproachMinCut");
  _minDistanceOfApproachMaxCut = ps.getParameter<double>("minDistanceOfApproachMaxCut");

  pfCandidateCollectionToken_ = consumes<reco::PFCandidateCollection>(ps.getParameter<edm::InputTag>("pfcandidates"));

  pi0OnlineSwitch_ = ps.getParameter<bool>("pi0OnlineSwitch");
  pi0SmallWindow_ = ps.getParameter<std::vector<double>>("pi0SmallWindow");
  pi0LargeWindow_ = ps.getParameter<std::vector<double>>("pi0LargeWindow");

  std::string algo = ps.getParameter<std::string>("convAlgo");
  convAlgo_ = StringToEnumValue<reco::Conversion::ConversionAlgorithm>(algo);

  std::vector<std::string> qual = ps.getParameter<std::vector<std::string>>("convQuality");
  if (!qual[0].empty())
    convQuality_ = StringToEnumValue<reco::Conversion::ConversionQuality>(qual);

  convSelectionCuts_ = ps.getParameter<std::string>("convSelection");
  convSelection_ = std::make_unique<StringCutObjectSelector<reco::Conversion>>(convSelectionCuts_);
  produces<pat::CompositeCandidateCollection>("conversions");
}

void OniaPhotonConversionProducer::produce(edm::Event& event, const edm::EventSetup& esetup) {
  std::unique_ptr<reco::ConversionCollection> outCollection(new reco::ConversionCollection);
  std::unique_ptr<pat::CompositeCandidateCollection> patoutCollection(new pat::CompositeCandidateCollection);

  edm::Handle<reco::VertexCollection> priVtxs;
  event.getByToken(thePVsToken_, priVtxs);

  edm::Handle<reco::ConversionCollection> pConv;
  event.getByToken(convCollectionToken_, pConv);

  edm::Handle<reco::PFCandidateCollection> pfcandidates;
  event.getByToken(pfCandidateCollectionToken_, pfcandidates);

  const reco::PFCandidateCollection pfphotons = selectPFPhotons(*pfcandidates);

  for (reco::ConversionCollection::const_iterator conv = pConv->begin(); conv != pConv->end(); ++conv) {
    if (!(*convSelection_)(*conv)) {
      continue;  // selection string
    }
    if (convAlgo_ != 0 && conv->algo() != convAlgo_) {
      continue;  // select algorithm
    }
    if (!convQuality_.empty()) {
      bool flagsok = true;
      for (std::vector<int>::const_iterator flag = convQuality_.begin(); flag != convQuality_.end(); ++flag) {
        reco::Conversion::ConversionQuality q = (reco::Conversion::ConversionQuality)(*flag);
        if (!conv->quality(q)) {
          flagsok = false;
          break;
        }
      }
      if (!flagsok) {
        continue;
      }
    }
    outCollection->push_back(*conv);
  }

  removeDuplicates(*outCollection);

  for (reco::ConversionCollection::const_iterator conv = outCollection->begin(); conv != outCollection->end(); ++conv) {
    bool flag1 = true;
    bool flag2 = true;
    bool flag3 = true;
    bool flag4 = true;

    // The logic implies that by default this flags are true and if the check are not wanted conversions are saved.
    // If checks are required and failed then don't save the conversion.

    bool flagTkVtxCompatibility = true;
    if (!checkTkVtxCompatibility(*conv, *priVtxs.product())) {
      flagTkVtxCompatibility = false;
      if (wantTkVtxCompatibility_) {
        flag1 = false;
      }
    }
    bool flagCompatibleInnerHits = false;
    if (conv->tracks().size() == 2) {
      reco::HitPattern hitPatA = conv->tracks().at(0)->hitPattern();
      reco::HitPattern hitPatB = conv->tracks().at(1)->hitPattern();
      if (foundCompatibleInnerHits(hitPatA, hitPatB) && foundCompatibleInnerHits(hitPatB, hitPatA))
        flagCompatibleInnerHits = true;
    }
    if (wantCompatibleInnerHits_ && !flagCompatibleInnerHits) {
      flag2 = false;
    }
    bool flagHighpurity = true;
    if (!HighpuritySubset(*conv, *priVtxs.product())) {
      flagHighpurity = false;
      if (wantHighpurity_) {
        flag3 = false;
      }
    }
    bool pizero_rejected = false;
    bool large_pizero_window = CheckPi0(*conv, pfphotons, pizero_rejected);
    if (pi0OnlineSwitch_ && pizero_rejected) {
      flag4 = false;
    }

    int flags = 0;
    if (flag1 && flag2 && flag3 && flag4) {
      flags = PackFlags(
          *conv, flagTkVtxCompatibility, flagCompatibleInnerHits, flagHighpurity, pizero_rejected, large_pizero_window);
      std::unique_ptr<pat::CompositeCandidate> pat_conv(makePhotonCandidate(*conv));
      pat_conv->addUserInt("flags", flags);
      patoutCollection->push_back(*pat_conv);
    }
  }
  event.put(std::move(patoutCollection), "conversions");
}

int OniaPhotonConversionProducer::PackFlags(const reco::Conversion& conv,
                                            bool flagTkVtxCompatibility,
                                            bool flagCompatibleInnerHits,
                                            bool flagHighpurity,
                                            bool pizero_rejected,
                                            bool large_pizero_window) {
  int flags = 0;
  if (flagTkVtxCompatibility)
    flags += 1;
  if (flagCompatibleInnerHits)
    flags += 2;
  if (flagHighpurity)
    flags += 4;
  if (pizero_rejected)
    flags += 8;
  if (large_pizero_window)
    flags += 16;

  flags += (conv.algo() * 32);
  int q_mask = 0;
  std::vector<std::string> s_quals;
  s_quals.push_back("generalTracksOnly");
  s_quals.push_back("arbitratedEcalSeeded");
  s_quals.push_back("arbitratedMerged");
  s_quals.push_back("arbitratedMergedEcalGeneral");
  s_quals.push_back("highPurity");
  s_quals.push_back("highEfficiency");
  s_quals.push_back("ecalMatched1Track");
  s_quals.push_back("ecalMatched2Track");
  std::vector<int> i_quals = StringToEnumValue<reco::Conversion::ConversionQuality>(s_quals);
  for (std::vector<int>::const_iterator qq = i_quals.begin(); qq != i_quals.end(); ++qq) {
    reco::Conversion::ConversionQuality q = (reco::Conversion::ConversionQuality)(*qq);
    if (conv.quality(q))
      q_mask = *qq;
  }
  flags += (q_mask * 32 * 8);
  return flags;
}

/** Put in out collection only those conversion candidates that are not sharing tracks.
    If sharing, keep the one with the best chi2.
 */
void OniaPhotonConversionProducer::removeDuplicates(reco::ConversionCollection& c) {
  // first sort from high to low chi2 prob
  std::sort(c.begin(), c.end(), ConversionLessByChi2);
  int iter1 = 0;
  // Cycle over all the elements of the collection and compare to all the following,
  // if two elements have at least one track in common delete the element with the lower chi2
  while (iter1 < (((int)c.size()) - 1)) {
    int iter2 = iter1 + 1;
    while (iter2 < (int)c.size())
      if (ConversionEqualByTrack(c[iter1], c[iter2])) {
        c.erase(c.begin() + iter2);
      } else {
        iter2++;  // Increment index only if this element is no duplicate.
            // If it is duplicate check again the same index since the vector rearranged elements index after erasing
      }
    iter1++;
  }
}

bool OniaPhotonConversionProducer::checkTkVtxCompatibility(const reco::Conversion& conv,
                                                           const reco::VertexCollection& priVtxs) {
  std::vector<std::pair<double, short>> idx[2];
  short ik = -1;
  for (auto const& tk : conv.tracks()) {
    ik++;
    short count = -1;
    for (auto const& vtx : priVtxs) {
      count++;

      double dz_ = tk->dz(vtx.position());
      double dzError_ = tk->dzError();
      dzError_ = sqrt(dzError_ * dzError_ + vtx.covariance(2, 2));
      if (fabs(dz_) / dzError_ > sigmaTkVtxComp_)
        continue;
      idx[ik].push_back(std::pair<double, short>(fabs(dz_), count));
    }
    if (idx[ik].empty())
      return false;
    if (idx[ik].size() > 1)
      std::stable_sort(idx[ik].begin(), idx[ik].end(), lt_);
  }
  if (ik != 1)
    return false;
  if (idx[0][0].second == idx[1][0].second)
    return true;
  if (idx[0].size() > 1 && idx[0][1].second == idx[1][0].second)
    return true;
  if (idx[1].size() > 1 && idx[0][0].second == idx[1][1].second)
    return true;

  return false;
}

bool OniaPhotonConversionProducer::foundCompatibleInnerHits(const reco::HitPattern& hitPatA,
                                                            const reco::HitPattern& hitPatB) {
  size_t count = 0;
  uint32_t oldSubStr = 0;
  for (int i = 0; i < hitPatA.numberOfAllHits(reco::HitPattern::HitCategory::TRACK_HITS) && count < 2; i++) {
    uint32_t hitA = hitPatA.getHitPattern(reco::HitPattern::HitCategory::TRACK_HITS, i);
    if (!hitPatA.validHitFilter(hitA) || !hitPatA.trackerHitFilter(hitA))
      continue;

    if (hitPatA.getSubStructure(hitA) == oldSubStr && hitPatA.getLayer(hitA) == oldSubStr)
      continue;

    if (hitPatB.getTrackerMonoStereo(
            reco::HitPattern::HitCategory::TRACK_HITS, hitPatA.getSubStructure(hitA), hitPatA.getLayer(hitA)) != 0)
      return true;

    oldSubStr = hitPatA.getSubStructure(hitA);
    count++;
  }
  return false;
}

bool OniaPhotonConversionProducer::HighpuritySubset(const reco::Conversion& conv,
                                                    const reco::VertexCollection& priVtxs) {
  // select high purity conversions our way:
  // vertex chi2 cut
  if (ChiSquaredProbability(conv.conversionVertex().chi2(), conv.conversionVertex().ndof()) < _vertexChi2ProbCut)
    return false;

  // d0 cut
  // Find closest primary vertex
  int closest_pv_index = 0;
  int i = 0;
  for (auto const& vtx : priVtxs) {
    if (conv.zOfPrimaryVertexFromTracks(vtx.position()) <
        conv.zOfPrimaryVertexFromTracks(priVtxs[closest_pv_index].position()))
      closest_pv_index = i;
    i++;
  }
  // Now check impact parameter wtr with the just found closest primary vertex
  for (auto const& tk : conv.tracks())
    if (-tk->dxy(priVtxs[closest_pv_index].position()) * tk->charge() / tk->dxyError() < 0)
      return false;

  // chi2 of single tracks
  for (auto const& tk : conv.tracks())
    if (tk->normalizedChi2() > _trackchi2Cut)
      return false;

  // dof for each track
  for (auto const& tk : conv.tracks())
    if (tk->ndof() < TkMinNumOfDOF_)
      return false;

  // distance of approach cut
  if (conv.distOfMinimumApproach() < _minDistanceOfApproachMinCut ||
      conv.distOfMinimumApproach() > _minDistanceOfApproachMaxCut)
    return false;

  return true;
}

pat::CompositeCandidate* OniaPhotonConversionProducer::makePhotonCandidate(const reco::Conversion& conv) {
  pat::CompositeCandidate* photonCand = new pat::CompositeCandidate();
  photonCand->setP4(convertVector(conv.refittedPair4Momentum()));
  photonCand->setVertex(conv.conversionVertex().position());

  photonCand->addUserData<reco::Track>("track0", *conv.tracks()[0]);
  photonCand->addUserData<reco::Track>("track1", *conv.tracks()[1]);

  return photonCand;
}

// create a collection of PF photons
const reco::PFCandidateCollection OniaPhotonConversionProducer::selectPFPhotons(
    const reco::PFCandidateCollection& pfcandidates) {
  reco::PFCandidateCollection pfphotons;
  for (reco::PFCandidateCollection::const_iterator cand = pfcandidates.begin(); cand != pfcandidates.end(); ++cand) {
    if (cand->particleId() == reco::PFCandidate::gamma)
      pfphotons.push_back(*cand);
  }
  return pfphotons;
}

bool OniaPhotonConversionProducer::CheckPi0(const reco::Conversion& conv,
                                            const reco::PFCandidateCollection& photons,
                                            bool& pizero_rejected) {
  // 2 windows are defined for Pi0 rejection, Conversions that, paired with others photons from the event, have an
  // invariant mass inside the "small" window will be pizero_rejected and those that falls in the large window will
  // be CheckPi0.
  bool check_small = false;
  bool check_large = false;

  float small1 = pi0SmallWindow_[0];
  float small2 = pi0SmallWindow_[1];
  float large1 = pi0LargeWindow_[0];
  float large2 = pi0LargeWindow_[1];
  for (reco::PFCandidateCollection::const_iterator photon = photons.begin(); photon != photons.end(); ++photon) {
    float inv = (conv.refittedPair4Momentum() + photon->p4()).M();
    if (inv > large1 && inv < large2) {
      check_large = true;
      if (inv > small1 && inv < small2) {
        check_small = true;
        break;
      }
    }
  }
  pizero_rejected = check_small;
  return check_large;
}

reco::Candidate::LorentzVector OniaPhotonConversionProducer::convertVector(const math::XYZTLorentzVectorF& v) {
  return reco::Candidate::LorentzVector(v.x(), v.y(), v.z(), v.t());
}

void OniaPhotonConversionProducer::endStream() {}
//define this as a plug-in
DEFINE_FWK_MODULE(OniaPhotonConversionProducer);