BlockDescriptor

CachedBytes

CachingAllocator

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
#ifndef HeterogeneousCore_AlpakaInterface_interface_CachingAllocator_h
#define HeterogeneousCore_AlpakaInterface_interface_CachingAllocator_h

#include <cassert>
#include <exception>
#include <iomanip>
#include <iostream>
#include <map>
#include <mutex>
#include <optional>
#include <sstream>
#include <string>
#include <tuple>
#include <type_traits>

#include <alpaka/alpaka.hpp>

#include "HeterogeneousCore/AlpakaInterface/interface/devices.h"
#include "HeterogeneousCore/AlpakaInterface/interface/AllocatorConfig.h"
#include "HeterogeneousCore/AlpakaInterface/interface/AlpakaServiceFwd.h"

// Inspired by cub::CachingDeviceAllocator

namespace cms::alpakatools {

  namespace detail {

    inline constexpr unsigned int power(unsigned int base, unsigned int exponent) {
      unsigned int power = 1;
      while (exponent > 0) {
        if (exponent & 1) {
          power = power * base;
        }
        base = base * base;
        exponent = exponent >> 1;
      }
      return power;
    }

    // format a memory size in B/KiB/MiB/GiB/TiB
    inline std::string as_bytes(size_t value) {
      if (value == std::numeric_limits<size_t>::max()) {
        return "unlimited";
      } else if (value >= (1ul << 40) and value % (1ul << 40) == 0) {
        return std::to_string(value >> 40) + " TiB";
      } else if (value >= (1ul << 30) and value % (1ul << 30) == 0) {
        return std::to_string(value >> 30) + " GiB";
      } else if (value >= (1ul << 20) and value % (1ul << 20) == 0) {
        return std::to_string(value >> 20) + " MiB";
      } else if (value >= (1ul << 10) and value % (1ul << 10) == 0) {
        return std::to_string(value >> 10) + " KiB";
      } else {
        return std::to_string(value) + "   B";
      }
    }

  }  // namespace detail

  /*
   * The "memory device" identifies the memory space, i.e. the device where the memory is allocated.
   * A caching allocator object is associated to a single memory `Device`, set at construction time, and unchanged for
   * the lifetime of the allocator.
   *
   * Each allocation is associated to an event on a queue, that identifies the "synchronisation device" according to
   * which the synchronisation occurs.
   * The `Event` type depends only on the synchronisation `Device` type.
   * The `Queue` type depends on the synchronisation `Device` type and the queue properties, either `Sync` or `Async`.
   *
   * **Note**: how to handle different queue and event types in a single allocator ?  store and access type-punned
   * queues and events ?  or template the internal structures on them, but with a common base class ?
   * alpaka does rely on the compile-time type for dispatch.
   *
   * Common use case #1: accelerator's memory allocations
   *   - the "memory device" is the accelerator device (e.g. a GPU);
   *   - the "synchronisation device" is the same accelerator device;
   *   - the `Queue` type is usually always the same (either `Sync` or `Async`).
   *
   * Common use case #2: pinned host memory allocations
   *    - the "memory device" is the host device (e.g. system memory);
   *    - the "synchronisation device" is the accelerator device (e.g. a GPU) whose work queue will access the host;
   *      memory (direct memory access from the accelerator, or scheduling `alpaka::memcpy`/`alpaka::memset`), and can
   *      be different for each allocation;
   *    - the synchronisation `Device` _type_ could potentially be different, but memory pinning is currently tied to
   *      the accelerator's platform (CUDA, HIP, etc.), so the device type needs to be fixed to benefit from caching;
   *    - the `Queue` type can be either `Sync` _or_ `Async` on any allocation.
   */

  template <typename TDev, typename TQueue>
  class CachingAllocator {
  public:
#ifdef ALPAKA_ACC_GPU_CUDA_ENABLED
    friend class alpaka_cuda_async::AlpakaService;
#endif
#ifdef ALPAKA_ACC_GPU_HIP_ENABLED
    friend class alpaka_rocm_async::AlpakaService;
#endif
#ifdef ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED
    friend class alpaka_serial_sync::AlpakaService;
#endif
#ifdef ALPAKA_ACC_CPU_B_TBB_T_SEQ_ENABLED
    friend class alpaka_tbb_async::AlpakaService;
#endif

    using Device = TDev;                 // the "memory device", where the memory will be allocated
    using Queue = TQueue;                // the queue used to submit the memory operations
    using Event = alpaka::Event<Queue>;  // the events used to synchronise the operations
    using Buffer = alpaka::Buf<Device, std::byte, alpaka::DimInt<1u>, size_t>;

    // The "memory device" type can either be the same as the "synchronisation device" type, or be the host CPU.
    static_assert(alpaka::isDevice<Device>, "TDev should be an alpaka Device type.");
    static_assert(alpaka::isQueue<Queue>, "TQueue should be an alpaka Queue type.");
    static_assert(std::is_same_v<Device, alpaka::Dev<Queue>> or std::is_same_v<Device, alpaka::DevCpu>,
                  "The \"memory device\" type can either be the same as the \"synchronisation device\" type, or be the "
                  "host CPU.");

    struct CachedBytes {
      size_t free = 0;       // total bytes freed and cached on this device
      size_t live = 0;       // total bytes currently in use oin this device
      size_t requested = 0;  // total bytes requested and currently in use on this device
    };

    explicit CachingAllocator(
        Device const& device,
        AllocatorConfig const& config,
        bool reuseSameQueueAllocations,  // Reuse non-ready allocations if they are in the same queue as the new one;
                                         // this is safe only if all memory operations are scheduled in the same queue.
                                         // In particular, this is not safe if the memory will be accessed without using
                                         // any queue, like host memory accessed directly or with immediate operations.
        bool debug = false)
        : device_(device),
          binGrowth_(config.binGrowth),
          minBin_(config.minBin),
          maxBin_(config.maxBin),
          minBinBytes_(detail::power(binGrowth_, minBin_)),
          maxBinBytes_(detail::power(binGrowth_, maxBin_)),
          maxCachedBytes_(cacheSize(config.maxCachedBytes, config.maxCachedFraction)),
          reuseSameQueueAllocations_(reuseSameQueueAllocations),
          debug_(debug),
          fillAllocations_(config.fillAllocations),
          fillAllocationValue_(config.fillAllocationValue),
          fillReallocations_(config.fillReallocations),
          fillReallocationValue_(config.fillReallocationValue),
          fillDeallocations_(config.fillDeallocations),
          fillDeallocationValue_(config.fillDeallocationValue),
          fillCaches_(config.fillCaches),
          fillCacheValue_(config.fillCacheValue) {
      if (debug_) {
        std::ostringstream out;
        out << "CachingAllocator settings\n"
            << "  bin growth " << binGrowth_ << "\n"
            << "  min bin    " << minBin_ << "\n"
            << "  max bin    " << maxBin_ << "\n"
            << "  resulting bins:\n";
        for (auto bin = minBin_; bin <= maxBin_; ++bin) {
          auto binSize = detail::power(binGrowth_, bin);
          out << "    " << std::right << std::setw(12) << detail::as_bytes(binSize) << '\n';
        }
        out << "  maximum amount of cached memory: " << detail::as_bytes(maxCachedBytes_);
        std::cout << out.str() << std::endl;
      }
    }

    ~CachingAllocator() {
      {
        // this should never be called while some memory blocks are still live
        std::scoped_lock lock(mutex_);
        assert(liveBlocks_.empty());
        assert(cachedBytes_.live == 0);
      }

      freeAllCached();
    }

    // return a copy of the cache allocation status, for monitoring purposes
    CachedBytes cacheStatus() const {
      std::scoped_lock lock(mutex_);
      return cachedBytes_;
    }

    // Fill a memory buffer with the specified bye value.
    // If the underlying device is the host and the allocator is configured to support immediate
    // (non queue-ordered) operations, fill the memory synchronously using std::memset.
    // Otherwise, let the alpaka queue schedule the operation.
    //
    // This is not used for deallocation/caching, because the memory may still be in use until the
    // corresponding event is reached.
    void immediateOrAsyncMemset(Queue queue, Buffer buffer, uint8_t value) {
      // host-only
      if (std::is_same_v<Device, alpaka::DevCpu> and not reuseSameQueueAllocations_) {
        std::memset(buffer.data(), value, alpaka::getExtentProduct(buffer) * sizeof(alpaka::Elem<Buffer>));
      } else {
        alpaka::memset(queue, buffer, value);
      }
    }

    // Allocate given number of bytes on the current device associated to given queue
    void* allocate(size_t bytes, Queue queue) {
      // create a block descriptor for the requested allocation
      BlockDescriptor block;
      block.queue = std::move(queue);
      block.requested = bytes;
      std::tie(block.bin, block.bytes) = findBin(bytes);

      // try to re-use a cached block, or allocate a new buffer
      if (tryReuseCachedBlock(block)) {
        // fill the re-used memory block with a pattern
        if (fillReallocations_) {
          immediateOrAsyncMemset(*block.queue, *block.buffer, fillReallocationValue_);
        } else if (fillAllocations_) {
          immediateOrAsyncMemset(*block.queue, *block.buffer, fillAllocationValue_);
        }
      } else {
        allocateNewBlock(block);
        // fill the newly allocated memory block with a pattern
        if (fillAllocations_) {
          immediateOrAsyncMemset(*block.queue, *block.buffer, fillAllocationValue_);
        }
      }

      return block.buffer->data();
    }

    // frees an allocation
    void free(void* ptr) {
      std::scoped_lock lock(mutex_);

      auto iBlock = liveBlocks_.find(ptr);
      if (iBlock == liveBlocks_.end()) {
        std::stringstream ss;
        ss << "Trying to free a non-live block at " << ptr;
        throw std::runtime_error(ss.str());
      }
      // remove the block from the list of live blocks
      BlockDescriptor block = std::move(iBlock->second);
      liveBlocks_.erase(iBlock);
      cachedBytes_.live -= block.bytes;
      cachedBytes_.requested -= block.requested;

      bool recache = (cachedBytes_.free + block.bytes <= maxCachedBytes_);
      if (recache) {
        // If enqueuing the event fails, very likely an error has
        // occurred in the asynchronous processing. In that case the
        // error will show up in all device API function calls, and
        // the free() will be called by destructors during stack
        // unwinding. In order to avoid terminate() being called
        // because of multiple exceptions it is best to ignore these
        // errors.
        try {
          // fill memory blocks with a pattern before caching them
          if (fillCaches_) {
            alpaka::memset(*block.queue, *block.buffer, fillCacheValue_);
          } else if (fillDeallocations_) {
            alpaka::memset(*block.queue, *block.buffer, fillDeallocationValue_);
          }
          // record in the block a marker associated to the work queue
          alpaka::enqueue(*(block.queue), *(block.event));
        } catch (std::exception& e) {
          if (debug_) {
            std::ostringstream out;
            out << "CachingAllocator::free() caught an alpaka error: " << e.what() << "\n";
            out << "\t" << deviceType_ << " " << alpaka::getName(device_) << " freed " << block.bytes << " bytes at "
                << ptr << " from associated queue " << block.queue->m_spQueueImpl.get() << ", event "
                << block.event->m_spEventImpl.get() << " .\n\t\t " << cachedBlocks_.size()
                << " available blocks cached (" << cachedBytes_.free << " bytes), " << liveBlocks_.size()
                << " live blocks (" << cachedBytes_.live << " bytes) outstanding." << std::endl;
            std::cout << out.str() << std::endl;
          }
          return;
        }
        cachedBytes_.free += block.bytes;
        // after the call to insert(), cachedBlocks_ shares ownership of the buffer
        // TODO use std::move ?
        cachedBlocks_.insert(std::make_pair(block.bin, block));

        if (debug_) {
          std::ostringstream out;
          out << "\t" << deviceType_ << " " << alpaka::getName(device_) << " returned " << block.bytes << " bytes at "
              << ptr << " from associated queue " << block.queue->m_spQueueImpl.get() << " , event "
              << block.event->m_spEventImpl.get() << " .\n\t\t " << cachedBlocks_.size() << " available blocks cached ("
              << cachedBytes_.free << " bytes), " << liveBlocks_.size() << " live blocks (" << cachedBytes_.live
              << " bytes) outstanding." << std::endl;
          std::cout << out.str() << std::endl;
        }
      } else {
        // If the memset fails, very likely an error has occurred in the
        // asynchronous processing. In that case the error will show up in all
        // device API function calls, and the free() will be called by
        // destructors during stack unwinding. In order to avoid terminate()
        // being called because of multiple exceptions it is best to ignore
        // these errors.
        try {
          // fill memory blocks with a pattern before freeing them
          if (fillDeallocations_) {
            alpaka::memset(*block.queue, *block.buffer, fillDeallocationValue_);
          }
        } catch (std::exception& e) {
          if (debug_) {
            std::ostringstream out;
            out << "CachingAllocator::free() caught an alpaka error: " << e.what() << "\n";
            out << "\t" << deviceType_ << " " << alpaka::getName(device_) << " freed " << block.bytes << " bytes at "
                << ptr << " from associated queue " << block.queue->m_spQueueImpl.get() << ", event "
                << block.event->m_spEventImpl.get() << " .\n\t\t " << cachedBlocks_.size()
                << " available blocks cached (" << cachedBytes_.free << " bytes), " << liveBlocks_.size()
                << " live blocks (" << cachedBytes_.live << " bytes) outstanding." << std::endl;
            std::cout << out.str() << std::endl;
          }
          return;
        }
        // if the buffer is not recached, it is automatically freed when block goes out of scope
        if (debug_) {
          std::ostringstream out;
          out << "\t" << deviceType_ << " " << alpaka::getName(device_) << " freed " << block.bytes << " bytes at "
              << ptr << " from associated queue " << block.queue->m_spQueueImpl.get() << ", event "
              << block.event->m_spEventImpl.get() << " .\n\t\t " << cachedBlocks_.size() << " available blocks cached ("
              << cachedBytes_.free << " bytes), " << liveBlocks_.size() << " live blocks (" << cachedBytes_.live
              << " bytes) outstanding." << std::endl;
          std::cout << out.str() << std::endl;
        }
      }
    }

  private:
    struct BlockDescriptor {
      std::optional<Buffer> buffer;
      std::optional<Queue> queue;
      std::optional<Event> event;
      size_t bytes = 0;
      size_t requested = 0;  // for monitoring only
      unsigned int bin = 0;

      // the "synchronisation device" for this block
      auto device() { return alpaka::getDev(*queue); }
    };

  private:
    // return the maximum amount of memory that should be cached on this device
    size_t cacheSize(size_t maxCachedBytes, double maxCachedFraction) const {
      // note that getMemBytes() returns 0 if the platform does not support querying the device memory
      size_t totalMemory = alpaka::getMemBytes(device_);
      size_t memoryFraction = static_cast<size_t>(maxCachedFraction * totalMemory);
      size_t size = std::numeric_limits<size_t>::max();
      if (maxCachedBytes > 0 and maxCachedBytes < size) {
        size = maxCachedBytes;
      }
      if (memoryFraction > 0 and memoryFraction < size) {
        size = memoryFraction;
      }
      return size;
    }

    // return (bin, bin size)
    std::tuple<unsigned int, size_t> findBin(size_t bytes) const {
      if (bytes < minBinBytes_) {
        return std::make_tuple(minBin_, minBinBytes_);
      }
      if (bytes > maxBinBytes_) {
        throw std::runtime_error("Requested allocation size " + std::to_string(bytes) +
                                 " bytes is too large for the caching detail with maximum bin " +
                                 std::to_string(maxBinBytes_) +
                                 " bytes. You might want to increase the maximum bin size");
      }
      unsigned int bin = minBin_;
      size_t binBytes = minBinBytes_;
      while (binBytes < bytes) {
        ++bin;
        binBytes *= binGrowth_;
      }
      return std::make_tuple(bin, binBytes);
    }

    bool tryReuseCachedBlock(BlockDescriptor& block) {
      std::scoped_lock lock(mutex_);

      // iterate through the range of cached blocks in the same bin
      const auto [begin, end] = cachedBlocks_.equal_range(block.bin);
      for (auto iBlock = begin; iBlock != end; ++iBlock) {
        if ((reuseSameQueueAllocations_ and (*block.queue == *(iBlock->second.queue))) or
            alpaka::isComplete(*(iBlock->second.event))) {
          // associate the cached buffer to the new queue
          auto queue = std::move(*(block.queue));
          // TODO cache (or remove) the debug information and use std::move()
          block = iBlock->second;
          block.queue = std::move(queue);

          // if the new queue is on different device than the old event, create a new event
          if (block.device() != alpaka::getDev(*(block.event))) {
            block.event = Event{block.device()};
          }

          // insert the cached block into the live blocks
          // TODO cache (or remove) the debug information and use std::move()
          liveBlocks_[block.buffer->data()] = block;

          // update the accounting information
          cachedBytes_.free -= block.bytes;
          cachedBytes_.live += block.bytes;
          cachedBytes_.requested += block.requested;

          if (debug_) {
            std::ostringstream out;
            out << "\t" << deviceType_ << " " << alpaka::getName(device_) << " reused cached block at "
                << block.buffer->data() << " (" << block.bytes << " bytes) for queue "
                << block.queue->m_spQueueImpl.get() << ", event " << block.event->m_spEventImpl.get()
                << " (previously associated with queue " << iBlock->second.queue->m_spQueueImpl.get() << " , event "
                << iBlock->second.event->m_spEventImpl.get() << ")." << std::endl;
            std::cout << out.str() << std::endl;
          }

          // remove the reused block from the list of cached blocks
          cachedBlocks_.erase(iBlock);
          return true;
        }
      }

      return false;
    }

    Buffer allocateBuffer(size_t bytes, Queue const& queue) {
      if constexpr (std::is_same_v<Device, alpaka::Dev<Queue>>) {
        // allocate device memory
        return alpaka::allocBuf<std::byte, size_t>(device_, bytes);
      } else if constexpr (std::is_same_v<Device, alpaka::DevCpu>) {
        // allocate pinned host memory accessible by the queue's platform
        using Platform = alpaka::Platform<alpaka::Dev<Queue>>;
        return alpaka::allocMappedBuf<std::byte, size_t>(device_, platform<Platform>(), bytes);
      } else {
        // unsupported combination
        static_assert(std::is_same_v<Device, alpaka::Dev<Queue>> or std::is_same_v<Device, alpaka::DevCpu>,
                      "The \"memory device\" type can either be the same as the \"synchronisation device\" type, or be "
                      "the host CPU.");
      }
    }

    void allocateNewBlock(BlockDescriptor& block) {
      try {
        block.buffer = allocateBuffer(block.bytes, *block.queue);
      } catch (std::runtime_error const& e) {
        // the allocation attempt failed: free all cached blocks on the device and retry
        if (debug_) {
          std::ostringstream out;
          out << "\t" << deviceType_ << " " << alpaka::getName(device_) << " failed to allocate " << block.bytes
              << " bytes for queue " << block.queue->m_spQueueImpl.get()
              << ", retrying after freeing cached allocations" << std::endl;
          std::cout << out.str() << std::endl;
        }
        // TODO implement a method that frees only up to block.bytes bytes
        freeAllCached();

        // throw an exception if it fails again
        block.buffer = allocateBuffer(block.bytes, *block.queue);
      }

      // create a new event associated to the "synchronisation device"
      block.event = Event{block.device()};

      {
        std::scoped_lock lock(mutex_);
        cachedBytes_.live += block.bytes;
        cachedBytes_.requested += block.requested;
        // TODO use std::move() ?
        liveBlocks_[block.buffer->data()] = block;
      }

      if (debug_) {
        std::ostringstream out;
        out << "\t" << deviceType_ << " " << alpaka::getName(device_) << " allocated new block at "
            << block.buffer->data() << " (" << block.bytes << " bytes associated with queue "
            << block.queue->m_spQueueImpl.get() << ", event " << block.event->m_spEventImpl.get() << "." << std::endl;
        std::cout << out.str() << std::endl;
      }
    }

    void freeAllCached() {
      std::scoped_lock lock(mutex_);

      while (not cachedBlocks_.empty()) {
        auto iBlock = cachedBlocks_.begin();
        cachedBytes_.free -= iBlock->second.bytes;

        if (debug_) {
          std::ostringstream out;
          out << "\t" << deviceType_ << " " << alpaka::getName(device_) << " freed " << iBlock->second.bytes
              << " bytes.\n\t\t  " << (cachedBlocks_.size() - 1) << " available blocks cached (" << cachedBytes_.free
              << " bytes), " << liveBlocks_.size() << " live blocks (" << cachedBytes_.live << " bytes) outstanding."
              << std::endl;
          std::cout << out.str() << std::endl;
        }

        cachedBlocks_.erase(iBlock);
      }
    }

    // TODO replace with a tbb::concurrent_multimap ?
    using CachedBlocks = std::multimap<unsigned int, BlockDescriptor>;  // ordered by the allocation bin
    // TODO replace with a tbb::concurrent_map ?
    using BusyBlocks = std::map<void*, BlockDescriptor>;  // ordered by the address of the allocated memory

    inline static const std::string deviceType_ = alpaka::core::demangled<Device>;

    mutable std::mutex mutex_;
    Device device_;  // the device where the memory is allocated

    CachedBytes cachedBytes_;
    CachedBlocks cachedBlocks_;  // Set of cached device allocations available for reuse
    BusyBlocks liveBlocks_;      // map of pointers to the live device allocations currently in use

    const unsigned int binGrowth_;  // Geometric growth factor for bin-sizes
    const unsigned int minBin_;
    const unsigned int maxBin_;

    const size_t minBinBytes_;
    const size_t maxBinBytes_;
    const size_t maxCachedBytes_;  // Maximum aggregate cached bytes per device

    const bool reuseSameQueueAllocations_;
    const bool debug_;

    const bool fillAllocations_;
    const uint8_t fillAllocationValue_;
    const bool fillReallocations_;
    const uint8_t fillReallocationValue_;
    const bool fillDeallocations_;
    const uint8_t fillDeallocationValue_;
    const bool fillCaches_;
    const uint8_t fillCacheValue_;
  };

}  // namespace cms::alpakatools

#endif  // HeterogeneousCore_AlpakaInterface_interface_CachingAllocator_h