VecArray

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
#ifndef HeterogeneousCore_AlpakaInterface_interface_VecArray_h
#define HeterogeneousCore_AlpakaInterface_interface_VecArray_h

//
// Author: Felice Pantaleo, CERN
//

#include <utility>

#include <alpaka/alpaka.hpp>

namespace cms::alpakatools {

  template <class T, int maxSize>
  class VecArray {
  public:
    using self = VecArray<T, maxSize>;
    using value_t = T;

    inline constexpr int push_back_unsafe(const T &element) {
      auto previousSize = m_size;
      m_size++;
      if (previousSize < maxSize) {
        m_data[previousSize] = element;
        return previousSize;
      } else {
        --m_size;
        return -1;
      }
    }

    template <class... Ts>
    constexpr int emplace_back_unsafe(Ts &&...args) {
      auto previousSize = m_size;
      m_size++;
      if (previousSize < maxSize) {
        (new (&m_data[previousSize]) T(std::forward<Ts>(args)...));
        return previousSize;
      } else {
        --m_size;
        return -1;
      }
    }

    inline constexpr T const &back() const {
      if (m_size > 0) {
        return m_data[m_size - 1];
      } else
        return T();  //undefined behaviour
    }

    inline constexpr T &back() {
      if (m_size > 0) {
        return m_data[m_size - 1];
      } else
        return T();  //undefined behaviour
    }

    // thread-safe version of the vector, when used in a kernel
    template <typename TAcc>
    ALPAKA_FN_ACC int push_back(const TAcc &acc, const T &element) {
      auto previousSize = alpaka::atomicAdd(acc, &m_size, 1, alpaka::hierarchy::Blocks{});
      if (previousSize < maxSize) {
        m_data[previousSize] = element;
        return previousSize;
      } else {
        alpaka::atomicSub(acc, &m_size, 1, alpaka::hierarchy::Blocks{});
        return -1;
      }
    }

    template <typename TAcc, class... Ts>
    ALPAKA_FN_ACC int emplace_back(const TAcc &acc, Ts &&...args) {
      auto previousSize = alpaka::atomicAdd(acc, &m_size, 1, alpaka::hierarchy::Blocks{});
      if (previousSize < maxSize) {
        (new (&m_data[previousSize]) T(std::forward<Ts>(args)...));
        return previousSize;
      } else {
        alpaka::atomicSub(acc, &m_size, 1, alpaka::hierarchy::Blocks{});
        return -1;
      }
    }

    inline constexpr T pop_back() {
      if (m_size > 0) {
        auto previousSize = m_size--;
        return m_data[previousSize - 1];
      } else
        return T();
    }

    inline constexpr T const *begin() const { return m_data; }
    inline constexpr T const *end() const { return m_data + m_size; }
    inline constexpr T *begin() { return m_data; }
    inline constexpr T *end() { return m_data + m_size; }
    inline constexpr int size() const { return m_size; }
    inline constexpr T &operator[](int i) { return m_data[i]; }
    inline constexpr const T &operator[](int i) const { return m_data[i]; }
    inline constexpr void reset() { m_size = 0; }
    inline static constexpr int capacity() { return maxSize; }
    inline constexpr T const *data() const { return m_data; }
    inline constexpr void resize(int size) { m_size = size; }
    inline constexpr bool empty() const { return 0 == m_size; }
    inline constexpr bool full() const { return maxSize == m_size; }

  private:
    T m_data[maxSize];

    int m_size;
  };

}  // namespace cms::alpakatools

#endif  // HeterogeneousCore_AlpakaInterface_interface_VecArray_h