1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
|
#ifndef HeterogeneousCore_AlpakaInterface_interface_radixSort_h
#define HeterogeneousCore_AlpakaInterface_interface_radixSort_h
#include <algorithm>
#include <cstdint>
#include <numeric>
#include <type_traits>
#include <alpaka/alpaka.hpp>
#include "HeterogeneousCore/AlpakaInterface/interface/workdivision.h"
#include "HeterogeneousCore/AlpakaInterface/interface/config.h"
namespace cms::alpakatools {
template <typename TAcc, typename T>
ALPAKA_FN_ACC ALPAKA_FN_INLINE void dummyReorder(
const TAcc& acc, T const* a, uint16_t* ind, uint16_t* ind2, uint32_t size) {}
template <typename TAcc, typename T>
ALPAKA_FN_ACC ALPAKA_FN_INLINE void reorderSigned(
const TAcc& acc, T const* a, uint16_t* ind, uint16_t* ind2, uint32_t size) {
//move negative first...
auto& firstNeg = alpaka::declareSharedVar<uint32_t, __COUNTER__>(acc);
firstNeg = a[ind[0]] < 0 ? 0 : size;
alpaka::syncBlockThreads(acc);
// find first negative
for (auto idx : independent_group_elements(acc, size - 1)) {
if ((a[ind[idx]] ^ a[ind[idx + 1]]) < 0) {
firstNeg = idx + 1;
}
}
alpaka::syncBlockThreads(acc);
for (auto idx : independent_group_elements(acc, firstNeg, size)) {
ind2[idx - firstNeg] = ind[idx];
}
alpaka::syncBlockThreads(acc);
for (auto idx : independent_group_elements(acc, firstNeg)) {
ind2[idx + size - firstNeg] = ind[idx];
}
alpaka::syncBlockThreads(acc);
for (auto idx : independent_group_elements(acc, size)) {
ind[idx] = ind2[idx];
}
}
template <typename TAcc, typename T>
ALPAKA_FN_ACC ALPAKA_FN_INLINE void reorderFloat(
const TAcc& acc, T const* a, uint16_t* ind, uint16_t* ind2, uint32_t size) {
//move negative first...
auto& firstNeg = alpaka::declareSharedVar<uint32_t, __COUNTER__>(acc);
firstNeg = a[ind[0]] < 0 ? 0 : size;
alpaka::syncBlockThreads(acc);
// find first negative
for (auto idx : independent_group_elements(acc, size - 1)) {
if ((a[ind[idx]] ^ a[ind[idx + 1]]) < 0)
firstNeg = idx + 1;
}
alpaka::syncBlockThreads(acc);
for (auto idx : independent_group_elements(acc, firstNeg, size)) {
ind2[size - idx - 1] = ind[idx];
}
alpaka::syncBlockThreads(acc);
for (auto idx : independent_group_elements(acc, firstNeg)) {
ind2[idx + size - firstNeg] = ind[idx];
}
alpaka::syncBlockThreads(acc);
for (auto idx : independent_group_elements(acc, size)) {
ind[idx] = ind2[idx];
}
}
// Radix sort implements a bytewise lexicographic order on the input data.
// Data is reordered into bins indexed by the byte considered. But considering least significant bytes first
// and respecting the existing order when binning the values, we achieve the lexicographic ordering.
// The number of bytes actually considered is a parameter template parameter.
// The post processing reorder
// function fixes the order when bitwise ordering is not the order for the underlying type (only based on
// most significant bit for signed types, integer or floating point).
// The floating point numbers are reinterpret_cast into integers in the calling wrapper
// This algorithm requires to run in a single block
template <typename TAcc,
typename T, // shall be integer, signed or not does not matter here
int NS, // number of significant bytes to use in sorting.
typename RF> // The post processing reorder function.
ALPAKA_FN_ACC ALPAKA_FN_INLINE void radixSortImpl(
const TAcc& acc, T const* __restrict__ a, uint16_t* ind, uint16_t* ind2, uint32_t size, RF reorder) {
if constexpr (!requires_single_thread_per_block_v<TAcc>) {
const auto warpSize = alpaka::warp::getSize(acc);
const uint32_t threadIdxLocal(alpaka::getIdx<alpaka::Block, alpaka::Threads>(acc)[0u]);
[[maybe_unused]] const uint32_t blockDimension(alpaka::getWorkDiv<alpaka::Block, alpaka::Elems>(acc)[0u]);
// we expect a power of 2 here
assert(warpSize && (0 == (warpSize & (warpSize - 1))));
const std::size_t warpMask = warpSize - 1;
// Define the bin size (d=8 => 1 byte bin).
constexpr int binBits = 8, dataBits = 8 * sizeof(T), totalSortingPassses = dataBits / binBits;
// Make sure the slices are data aligned
static_assert(0 == dataBits % binBits);
// Make sure the NS parameter makes sense
static_assert(NS > 0 && NS <= sizeof(T));
constexpr int binsNumber = 1 << binBits;
constexpr int binsMask = binsNumber - 1;
// Prefix scan iterations. NS is counted in full bytes and not slices.
constexpr int initialSortingPass = int(sizeof(T)) - NS;
// Count/index for the prefix scan
// TODO: rename
auto& c = alpaka::declareSharedVar<int32_t[binsNumber], __COUNTER__>(acc);
// Temporary storage for prefix scan. Only really needed for first-of-warp keeping
// Then used for thread to bin mapping TODO: change type to byte and remap to
auto& ct = alpaka::declareSharedVar<int32_t[binsNumber], __COUNTER__>(acc);
// Bin to thread index mapping (used to store the highest thread index within a bin number
// batch of threads.
// TODO: currently initialized to an invalid value, but could also be initialized to the
// lowest possible value (change to bytes?)
auto& cu = alpaka::declareSharedVar<int32_t[binsNumber], __COUNTER__>(acc);
// TODO we could also have an explicit caching of the current index for each thread.
// TODO: do those have to be shared?
auto& ibs = alpaka::declareSharedVar<int, __COUNTER__>(acc);
auto& currentSortingPass = alpaka::declareSharedVar<int, __COUNTER__>(acc);
ALPAKA_ASSERT_ACC(size > 0);
// TODO: is this a hard requirement?
ALPAKA_ASSERT_ACC(blockDimension >= binsNumber);
currentSortingPass = initialSortingPass;
auto j = ind;
auto k = ind2;
// Initializer index order to trivial increment.
for (auto idx : independent_group_elements(acc, size)) {
j[idx] = idx;
}
alpaka::syncBlockThreads(acc);
// Iterate on the slices of the data.
while (alpaka::syncBlockThreadsPredicate<alpaka::BlockAnd>(acc, (currentSortingPass < totalSortingPassses))) {
for (auto idx : independent_group_elements(acc, binsNumber)) {
c[idx] = 0;
}
alpaka::syncBlockThreads(acc);
const auto sortingPassShift = binBits * currentSortingPass;
// fill bins (count elements in each bin)
for (auto idx : independent_group_elements(acc, size)) {
auto bin = (a[j[idx]] >> sortingPassShift) & binsMask;
alpaka::atomicAdd(acc, &c[bin], 1, alpaka::hierarchy::Threads{});
}
alpaka::syncBlockThreads(acc);
if (!threadIdxLocal && 1 == alpaka::getIdx<alpaka::Grid, alpaka::Blocks>(acc)[0]) {
// printf("Pass=%d, Block=%d, ", currentSortingPass - 1, alpaka::getIdx<alpaka::Grid, alpaka::Blocks>(acc)[0]);
size_t total = 0;
for (int i = 0; i < (int)binsNumber; i++) {
// printf("count[%d]=%d ", i, c[i] );
total += c[i];
}
// printf("total=%zu\n", total);
assert(total == size);
}
// prefix scan "optimized"???...
// TODO: we might be able to reuse the warpPrefixScan function
// Warp level prefix scan
for (auto idx : independent_group_elements(acc, binsNumber)) {
auto x = c[idx];
auto laneId = idx & warpMask;
for (int offset = 1; offset < warpSize; offset <<= 1) {
auto y = alpaka::warp::shfl(acc, x, laneId - offset);
if (laneId >= (uint32_t)offset)
x += y;
}
ct[idx] = x;
}
alpaka::syncBlockThreads(acc);
// Block level completion of prefix scan (add last sum of each preceding warp)
for (auto idx : independent_group_elements(acc, binsNumber)) {
auto ss = (idx / warpSize) * warpSize - 1;
c[idx] = ct[idx];
for (int i = ss; i > 0; i -= warpSize)
c[idx] += ct[i];
}
// Post prefix scan, c[bin] contains the offsets in index counts to the last index +1 for each bin
/*
//prefix scan for the nulls (for documentation)
if (threadIdxLocal==0)
for (int i = 1; i < sb; ++i) c[i] += c[i-1];
*/
// broadcast: we will fill the new index array downward, from offset c[bin], with one thread per
// bin, working on one set of bin size elements at a time.
// This will reorder the indices by the currently considered slice, otherwise preserving the previous order.
ibs = size - 1;
alpaka::syncBlockThreads(acc);
// Iterate on bin-sized slices to (size - 1) / binSize + 1 iterations
while (alpaka::syncBlockThreadsPredicate<alpaka::BlockAnd>(acc, ibs >= 0)) {
// Init
for (auto idx : independent_group_elements(acc, binsNumber)) {
cu[idx] = -1;
ct[idx] = -1;
}
alpaka::syncBlockThreads(acc);
// Find the highest index for all the threads dealing with a given bin (in cu[])
// Also record the bin for each thread (in ct[])
for (auto idx : independent_group_elements(acc, binsNumber)) {
int i = ibs - idx;
int32_t bin = -1;
if (i >= 0) {
bin = (a[j[i]] >> sortingPassShift) & binsMask;
ct[idx] = bin;
alpaka::atomicMax(acc, &cu[bin], int(i), alpaka::hierarchy::Threads{});
}
}
alpaka::syncBlockThreads(acc);
// FIXME: we can slash a memory access.
for (auto idx : independent_group_elements(acc, binsNumber)) {
int i = ibs - idx;
// Are we still in inside the data?
if (i >= 0) {
int32_t bin = ct[idx];
// Are we the thread with the highest index (from previous pass)?
if (cu[bin] == i) {
// With the highest index, we are actually the lowest thread number. We will
// work "on behalf of" the higher thread numbers (including ourselves)
// No way around scanning and testing for bin in ct[otherThread] number to find the other threads
for (int peerThreadIdx = idx; peerThreadIdx < binsNumber; peerThreadIdx++) {
if (ct[peerThreadIdx] == bin) {
k[--c[bin]] = j[ibs - peerThreadIdx];
}
}
}
}
/*
int32_t bin = (i >= 0 ? ((a[j[i]] >> sortingPassShift) & binsMask) : -1);
if (i >= 0 && i == cu[bin]) // ensure to keep them in order: only one thread per bin is active, rest is idle.
//
for (int ii = idx; ii < sb; ++ii)
if (ct[ii] == bin) {
auto oi = ii - idx;
// assert(i>=oi);if(i>=oi)
k[--c[bin]] = j[i - oi]; // i = ibs - idx, oi = ii - idx => i - oi = ibs - ii;
}
*/
}
alpaka::syncBlockThreads(acc);
if (threadIdxLocal == 0) {
ibs -= binsNumber;
// https://github.com/cms-patatrack/pixeltrack-standalone/pull/210
// TODO: is this really needed?
alpaka::mem_fence(acc, alpaka::memory_scope::Grid{});
}
alpaka::syncBlockThreads(acc);
}
/*
// broadcast for the nulls (for documentation)
if (threadIdxLocal==0)
for (int i=size-first-1; i>=0; i--) { // =blockDim.x) {
auto bin = (a[j[i]] >> d*p)&(sb-1);
auto ik = atomicSub(&c[bin],1);
k[ik-1] = j[i];
}
*/
alpaka::syncBlockThreads(acc);
ALPAKA_ASSERT_ACC(c[0] == 0);
// swap (local, ok)
auto t = j;
j = k;
k = t;
const uint32_t threadIdxLocal(alpaka::getIdx<alpaka::Block, alpaka::Threads>(acc)[0u]);
if (threadIdxLocal == 0)
++currentSortingPass;
alpaka::syncBlockThreads(acc);
}
if ((dataBits != 8) && (0 == (NS & 1)))
ALPAKA_ASSERT_ACC(j ==
ind); // dataBits/binBits is even so ind is correct (the result is in the right location)
// TODO this copy is (doubly?) redundant with the reorder
if (j != ind) // odd number of sorting passes, we need to move the result to the right array (ind[])
for (auto idx : independent_group_elements(acc, size)) {
ind[idx] = ind2[idx];
};
alpaka::syncBlockThreads(acc);
// now move negative first... (if signed)
// TODO: the ind2 => ind copy should have beed deferred. We should pass (j != ind) as an extra parameter
reorder(acc, a, ind, ind2, size);
} else {
//static_assert(false);
}
}
template <typename TAcc,
typename T,
int NS = sizeof(T), // number of significant bytes to use in sorting
typename std::enable_if<std::is_unsigned<T>::value && !requires_single_thread_per_block_v<TAcc>, T>::type* =
nullptr>
ALPAKA_FN_ACC ALPAKA_FN_INLINE void radixSort(
const TAcc& acc, T const* a, uint16_t* ind, uint16_t* ind2, uint32_t size) {
radixSortImpl<TAcc, T, NS>(acc, a, ind, ind2, size, dummyReorder<TAcc, T>);
}
template <typename TAcc,
typename T,
int NS = sizeof(T), // number of significant bytes to use in sorting
typename std::enable_if<std::is_integral<T>::value && std::is_signed<T>::value &&
!requires_single_thread_per_block_v<TAcc>,
T>::type* = nullptr>
ALPAKA_FN_ACC ALPAKA_FN_INLINE void radixSort(
const TAcc& acc, T const* a, uint16_t* ind, uint16_t* ind2, uint32_t size) {
radixSortImpl<TAcc, T, NS>(acc, a, ind, ind2, size, reorderSigned<TAcc, T>);
}
template <typename TAcc,
typename T,
int NS = sizeof(T), // number of significant bytes to use in sorting
typename std::enable_if<std::is_floating_point<T>::value && !requires_single_thread_per_block_v<TAcc>,
T>::type* = nullptr>
ALPAKA_FN_ACC ALPAKA_FN_INLINE void radixSort(
const TAcc& acc, T const* a, uint16_t* ind, uint16_t* ind2, uint32_t size) {
static_assert(sizeof(T) == sizeof(int), "radixSort with the wrong type size");
using I = int;
radixSortImpl<TAcc, I, NS>(acc, (I const*)(a), ind, ind2, size, reorderFloat<TAcc, I>);
}
template <typename TAcc,
typename T,
int NS = sizeof(T), // number of significant bytes to use in sorting
typename std::enable_if<requires_single_thread_per_block_v<TAcc>, T>::type* = nullptr>
/* not ALPAKA_FN_ACC to avoid trying to compile it for the CUDA or ROCm back-ends */
ALPAKA_FN_INLINE void radixSort(const TAcc& acc, T const* a, uint16_t* ind, uint16_t* ind2, uint32_t size) {
static_assert(requires_single_thread_per_block_v<TAcc>, "CPU sort (not a radixSort) called wtth wrong accelerator");
// Initialize the index array
std::iota(ind, ind + size, 0);
/*
printf("std::stable_sort(a=%p, ind=%p, indmax=%p, size=%d)\n", a, ind, ind + size, size);
for (uint32_t i=0; i<10 && i<size; i++) {
printf ("a[%d]=%ld ", i, (long int)a[i]);
}
printf("\n");
for (uint32_t i=0; i<10 && i<size; i++) {
printf ("ind[%d]=%d ", i, ind[i]);
}
printf("\n");
*/
std::stable_sort(ind, ind + size, [a](uint16_t i0, uint16_t i1) { return a[i0] < a[i1]; });
/*
for (uint32_t i=0; i<10 && i<size; i++) {
printf ("ind[%d]=%d ", i, ind[i]);
}
printf("\n");
*/
}
template <typename TAcc, typename T, int NS = sizeof(T)>
ALPAKA_FN_ACC ALPAKA_FN_INLINE void radixSortMulti(
const TAcc& acc, T const* v, uint16_t* index, uint32_t const* offsets, uint16_t* workspace) {
// TODO: check
// Sort multiple blocks of data in v[] separated by in chunks located at offsets[]
// extern __shared__ uint16_t ws[];
uint16_t* ws = alpaka::getDynSharedMem<uint16_t>(acc);
const uint32_t blockIdx(alpaka::getIdx<alpaka::Grid, alpaka::Blocks>(acc)[0u]);
auto a = v + offsets[blockIdx];
auto ind = index + offsets[blockIdx];
auto ind2 = nullptr == workspace ? ws : workspace + offsets[blockIdx];
auto size = offsets[blockIdx + 1] - offsets[blockIdx];
assert(offsets[blockIdx + 1] >= offsets[blockIdx]);
if (size > 0)
radixSort<TAcc, T, NS>(acc, a, ind, ind2, size);
}
template <typename T, int NS = sizeof(T)>
struct radixSortMultiWrapper {
/* We cannot set launch_bounds in alpaka, so both kernel wrappers are identical (keeping CUDA/HIP code for reference for the moment)
#if defined(__CUDACC__) || defined(__HIPCC__)
//__global__ void __launch_bounds__(256, 4)
#endif
*/
template <typename TAcc>
ALPAKA_FN_ACC void operator()(const TAcc& acc,
T const* v,
uint16_t* index,
uint32_t const* offsets,
uint16_t* workspace,
size_t sharedMemBytes = 0) const {
radixSortMulti<TAcc, T, NS>(acc, v, index, offsets, workspace);
}
};
template <typename T, int NS = sizeof(T)>
struct radixSortMultiWrapper2 {
template <typename TAcc>
ALPAKA_FN_ACC void operator()(const TAcc& acc,
T const* v,
uint16_t* index,
uint32_t const* offsets,
uint16_t* workspace,
size_t sharedMemBytes = 0) const {
radixSortMulti<TAcc, T, NS>(acc, v, index, offsets, workspace);
}
};
} // namespace cms::alpakatools
namespace alpaka::trait {
// specialize the BlockSharedMemDynSizeBytes trait to specify the amount of
// block shared dynamic memory for the radixSortMultiWrapper kernel
template <typename TAcc, typename T, int NS>
struct BlockSharedMemDynSizeBytes<cms::alpakatools::radixSortMultiWrapper<T, NS>, TAcc> {
// the size in bytes of the shared memory allocated for a block
ALPAKA_FN_HOST_ACC static std::size_t getBlockSharedMemDynSizeBytes(
cms::alpakatools::radixSortMultiWrapper<T, NS> const& /* kernel */,
alpaka_common::Vec1D /* threads */,
alpaka_common::Vec1D /* elements */,
T const* /* v */,
uint16_t* /* index */,
uint32_t const* /* offsets */,
uint16_t* workspace,
size_t sharedMemBytes) {
if (workspace != nullptr)
return 0;
/* The shared memory workspace is 'blockspace * 2' in CUDA *but that's a value coincidence... TODO: check */
//printf ("in BlockSharedMemDynSizeBytes<cms::alpakatools::radixSortMultiWrapper<T, NS>, TAcc>: shared mem size = %d\n", (int)sharedMemBytes);
return sharedMemBytes;
}
};
} // namespace alpaka::trait
#endif // HeterogeneousCore_AlpakaInterface_interface_radixSort_h
|