1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
|
#ifndef HeterogeneousCore_AlpakaInterface_interface_workdivision_h
#define HeterogeneousCore_AlpakaInterface_interface_workdivision_h
#include <algorithm>
#include <cstddef>
#include <type_traits>
#include <alpaka/alpaka.hpp>
#include "HeterogeneousCore/AlpakaInterface/interface/config.h"
namespace cms::alpakatools {
using namespace alpaka_common;
// If the first argument is not a multiple of the second argument, round it up to the next multiple
inline constexpr Idx round_up_by(Idx value, Idx divisor) { return (value + divisor - 1) / divisor * divisor; }
// Return the integer division of the first argument by the second argument, rounded up to the next integer
inline constexpr Idx divide_up_by(Idx value, Idx divisor) { return (value + divisor - 1) / divisor; }
// Trait describing whether or not the accelerator expects the threads-per-block and elements-per-thread to be swapped
template <typename TAcc, typename = std::enable_if_t<alpaka::isAccelerator<TAcc>>>
struct requires_single_thread_per_block : public std::true_type {};
#ifdef ALPAKA_ACC_GPU_CUDA_ENABLED
template <typename TDim>
struct requires_single_thread_per_block<alpaka::AccGpuCudaRt<TDim, Idx>> : public std::false_type {};
#endif // ALPAKA_ACC_GPU_CUDA_ENABLED
#ifdef ALPAKA_ACC_GPU_HIP_ENABLED
template <typename TDim>
struct requires_single_thread_per_block<alpaka::AccGpuHipRt<TDim, Idx>> : public std::false_type {};
#endif // ALPAKA_ACC_GPU_HIP_ENABLED
#ifdef ALPAKA_ACC_CPU_B_SEQ_T_THREADS_ENABLED
template <typename TDim>
struct requires_single_thread_per_block<alpaka::AccCpuThreads<TDim, Idx>> : public std::false_type {};
#endif // ALPAKA_ACC_CPU_B_SEQ_T_THREADS_ENABLED
// Whether or not the accelerator expects the threads-per-block and elements-per-thread to be swapped
template <typename TAcc, typename = std::enable_if_t<alpaka::isAccelerator<TAcc>>>
inline constexpr bool requires_single_thread_per_block_v = requires_single_thread_per_block<TAcc>::value;
// Create an accelerator-dependent work division for 1-dimensional kernels
template <typename TAcc, typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and alpaka::Dim<TAcc>::value == 1>>
inline WorkDiv<Dim1D> make_workdiv(Idx blocks, Idx elements) {
if constexpr (not requires_single_thread_per_block_v<TAcc>) {
// On GPU backends, each thread is looking at a single element:
// - the number of threads per block is "elements";
// - the number of elements per thread is always 1.
return WorkDiv<Dim1D>(blocks, elements, Idx{1});
} else {
// On CPU backends, run serially with a single thread per block:
// - the number of threads per block is always 1;
// - the number of elements per thread is "elements".
return WorkDiv<Dim1D>(blocks, Idx{1}, elements);
}
}
// Create the accelerator-dependent workdiv for N-dimensional kernels
template <typename TAcc, typename = std::enable_if_t<alpaka::isAccelerator<TAcc>>>
inline WorkDiv<alpaka::Dim<TAcc>> make_workdiv(const Vec<alpaka::Dim<TAcc>>& blocks,
const Vec<alpaka::Dim<TAcc>>& elements) {
using Dim = alpaka::Dim<TAcc>;
if constexpr (not requires_single_thread_per_block_v<TAcc>) {
// On GPU backends, each thread is looking at a single element:
// - the number of threads per block is "elements";
// - the number of elements per thread is always 1.
return WorkDiv<Dim>(blocks, elements, Vec<Dim>::ones());
} else {
// On CPU backends, run serially with a single thread per block:
// - the number of threads per block is always 1;
// - the number of elements per thread is "elements".
return WorkDiv<Dim>(blocks, Vec<Dim>::ones(), elements);
}
}
/* ElementIndex
*
* an aggregate that containes the `.global` and `.local` indices of an element; returned by iterating over the objecs
* returned by `uniform_group_elements` and similar functions.
*/
struct ElementIndex {
Idx global;
Idx local;
};
namespace detail {
/* UniformElementsAlong
*
* `UniformElementsAlong<TAcc, Dim>(acc [, first], extent)` returns a one-dimensional iteratable range that spans the
* element indices from `first` (inclusive) to `extent` (exlusive) along the `Dim` dimension.
* If `first` is not specified, it defaults to 0.
* If `extent` is not specified, it defaults to the kernel grid size along the `Dim` dimension.
*
* `uniform_elements_along<Dim>(acc, ...)` is a shorthand for `UniformElementsAlong<TAcc, Dim>(acc, ...)` that can
* infer the accelerator type from the argument.
*
* In a 1-dimensional kernel, `uniform_elements(acc, ...)` is a shorthand for `UniformElementsAlong<TAcc, 0>(acc, ...)`.
*
* In an N-dimensional kernel, dimension 0 is the one that increases more slowly (e.g. the outer loop), followed
* by dimension 1, up to dimension N-1 that increases fastest (e.g. the inner loop).
* For convenience when converting CUDA or HIP code, `uniform_elements_x(acc, ...)`, `_y` and `_z` are shorthands for
* `UniformElementsAlong<TAcc, N-1>(acc, ...)`, `<N-2>` and `<N-3>`.
*
* To cover the problem space, different threads may execute a different number of iterations. As a result, it is not
* safe to call `alpaka::syncBlockThreads()` and other block-level synchronisations within this loop.
* If a block synchronisation is needed, one should split the loop into an outer loop over the groups and an inner
* loop over each group's elements, and synchronise only in the outer loop:
*
* for (auto group : uniform_groups_along<Dim>(acc, extent)) {
* for (auto element : uniform_group_elements_along<Dim>(acc, group, extent)) {
* // first part of the computation
* // no synchronisations here
* ...
* }
* // wait for all threads to complete the first part
* alpaka::syncBlockThreads();
* for (auto element : uniform_group_elements_along<Dim>(acc, group, extent)) {
* // second part of the computation
* // no synchronisations here
* ...
* }
* // wait for all threads to complete the second part
* alpaka::syncBlockThreads();
* ...
* }
*
* Warp-level primitives require that all threads in the warp execute the same function. If `extent` is not a multiple
* of the warp size, some of the warps may be incomplete, leading to undefined behaviour - for example, the kernel may
* hang. To avoid this problem, round up `extent` to a multiple of the warp size, and check the element index
* explicitly inside the loop:
*
* for (auto element : uniform_elements_along<N-1>(acc, round_up_by(extent, alpaka::warp::getSize(acc)))) {
* bool flag = false;
* if (element < extent) {
* // do some work and compute a result flag only for the valid elements
* flag = do_some_work();
* }
* // check if any valid element had a positive result
* if (alpaka::warp::any(acc, flag)) {
* // ...
* }
* }
*
* Note that the use of warp-level primitives is usually suitable only for the fastest-looping dimension, `N-1`.
*/
template <typename TAcc,
std::size_t Dim,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and alpaka::Dim<TAcc>::value >= Dim>>
class UniformElementsAlong {
public:
ALPAKA_FN_ACC inline UniformElementsAlong(TAcc const& acc)
: elements_{alpaka::getWorkDiv<alpaka::Thread, alpaka::Elems>(acc)[Dim]},
first_{alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[Dim] * elements_},
stride_{alpaka::getWorkDiv<alpaka::Grid, alpaka::Threads>(acc)[Dim] * elements_},
extent_{stride_} {}
ALPAKA_FN_ACC inline UniformElementsAlong(TAcc const& acc, Idx extent)
: elements_{alpaka::getWorkDiv<alpaka::Thread, alpaka::Elems>(acc)[Dim]},
first_{alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[Dim] * elements_},
stride_{alpaka::getWorkDiv<alpaka::Grid, alpaka::Threads>(acc)[Dim] * elements_},
extent_{extent} {}
ALPAKA_FN_ACC inline UniformElementsAlong(TAcc const& acc, Idx first, Idx extent)
: elements_{alpaka::getWorkDiv<alpaka::Thread, alpaka::Elems>(acc)[Dim]},
first_{alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[Dim] * elements_ + first},
stride_{alpaka::getWorkDiv<alpaka::Grid, alpaka::Threads>(acc)[Dim] * elements_},
extent_{extent} {}
class const_iterator;
using iterator = const_iterator;
ALPAKA_FN_ACC inline const_iterator begin() const { return const_iterator(elements_, stride_, extent_, first_); }
ALPAKA_FN_ACC inline const_iterator end() const { return const_iterator(elements_, stride_, extent_, extent_); }
class const_iterator {
friend class UniformElementsAlong;
ALPAKA_FN_ACC inline const_iterator(Idx elements, Idx stride, Idx extent, Idx first)
: elements_{elements},
stride_{stride},
extent_{extent},
first_{std::min(first, extent)},
index_{first_},
range_{std::min(first + elements, extent)} {}
public:
ALPAKA_FN_ACC inline Idx operator*() const { return index_; }
// pre-increment the iterator
ALPAKA_FN_ACC inline const_iterator& operator++() {
if constexpr (requires_single_thread_per_block_v<TAcc>) {
// increment the index along the elements processed by the current thread
++index_;
if (index_ < range_)
return *this;
}
// increment the thread index with the grid stride
first_ += stride_;
index_ = first_;
range_ = std::min(first_ + elements_, extent_);
if (index_ < extent_)
return *this;
// the iterator has reached or passed the end of the extent, clamp it to the extent
first_ = extent_;
index_ = extent_;
range_ = extent_;
return *this;
}
// post-increment the iterator
ALPAKA_FN_ACC inline const_iterator operator++(int) {
const_iterator old = *this;
++(*this);
return old;
}
ALPAKA_FN_ACC inline bool operator==(const_iterator const& other) const {
return (index_ == other.index_) and (first_ == other.first_);
}
ALPAKA_FN_ACC inline bool operator!=(const_iterator const& other) const { return not(*this == other); }
private:
// non-const to support iterator copy and assignment
Idx elements_;
Idx stride_;
Idx extent_;
// modified by the pre/post-increment operator
Idx first_;
Idx index_;
Idx range_;
};
private:
const Idx elements_;
const Idx first_;
const Idx stride_;
const Idx extent_;
};
} // namespace detail
/* uniform_elements
*
* `uniform_elements(acc [, first], extent)` returns a one-dimensional iteratable range that spans the element indices
* from `first` (inclusive) to `extent` (exlusive).
* If `first` is not specified, it defaults to 0.
* If `extent` is not specified, it defaults to the kernel grid size.
*
* `uniform_elements(acc, ...)` is a shorthand for `detail::UniformElementsAlong<TAcc, 0>(acc, ...)`.
*
* To cover the problem space, different threads may execute a different number of iterations. As a result, it is not
* safe to call `alpaka::syncBlockThreads()` and other block-level synchronisations within this loop.
* If a block synchronisation is needed, one should split the loop into an outer loop over the groups and an inner
* loop over each group's elements, and synchronise only in the outer loop:
*
* for (auto group : uniform_groups(acc, extent)) {
* for (auto element : uniform_group_elements(acc, group, extent)) {
* // first part of the computation
* // no synchronisations here
* ...
* }
* // wait for all threads to complete the first part
* alpaka::syncBlockThreads();
* for (auto element : uniform_group_elements(acc, group, extent)) {
* // second part of the computation
* // no synchronisations here
* ...
* }
* // wait for all threads to complete the second part
* alpaka::syncBlockThreads();
* ...
* }
*
* Warp-level primitives require that all threads in the warp execute the same function. If `extent` is not a multiple
* of the warp size, some of the warps may be incomplete, leading to undefined behaviour - for example, the kernel may
* hang. To avoid this problem, round up `extent` to a multiple of the warp size, and check the element index
* explicitly inside the loop:
*
* for (auto element : uniform_elements(acc, round_up_by(extent, alpaka::warp::getSize(acc)))) {
* bool flag = false;
* if (element < extent) {
* // do some work and compute a result flag only for elements up to extent
* flag = do_some_work();
* }
* // check if any valid element had a positive result
* if (alpaka::warp::any(acc, flag)) {
* // ...
* }
* }
*
* Note that `uniform_elements(acc, ...)` is only suitable for one-dimensional kernels. For N-dimensional kernels, use
* - `uniform_elements_nd(acc, ...)` to cover an N-dimensional problem space with a single loop;
* - `uniform_elements_along<Dim>(acc, ...)` to perform the iteration explicitly along dimension `Dim`;
* - `uniform_elements_x(acc, ...)`, `uniform_elements_y(acc, ...)`, or `uniform_elements_z(acc, ...)` to loop
* along the fastest, second-fastest, or third-fastest dimension.
*/
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and alpaka::Dim<TAcc>::value == 1>>
ALPAKA_FN_ACC inline auto uniform_elements(TAcc const& acc, TArgs... args) {
return detail::UniformElementsAlong<TAcc, 0>(acc, static_cast<Idx>(args)...);
}
/* uniform_elements_along<Dim>
*
* `uniform_elements_along<Dim>(acc, ...)` is a shorthand for `detail::UniformElementsAlong<TAcc, Dim>(acc, ...)` that can
* infer the accelerator type from the argument.
*/
template <typename TAcc,
std::size_t Dim,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and alpaka::Dim<TAcc>::value >= Dim>>
ALPAKA_FN_ACC inline auto uniform_elements_along(TAcc const& acc, TArgs... args) {
return detail::UniformElementsAlong<TAcc, Dim>(acc, static_cast<Idx>(args)...);
}
/* uniform_elements_x, _y, _z
*
* Like `uniform_elements` for N-dimensional kernels, along the fastest, second-fastest, and third-fastest dimensions.
*/
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 0)>>
ALPAKA_FN_ACC inline auto uniform_elements_x(TAcc const& acc, TArgs... args) {
return detail::UniformElementsAlong<TAcc, alpaka::Dim<TAcc>::value - 1>(acc, static_cast<Idx>(args)...);
}
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 1)>>
ALPAKA_FN_ACC inline auto uniform_elements_y(TAcc const& acc, TArgs... args) {
return detail::UniformElementsAlong<TAcc, alpaka::Dim<TAcc>::value - 2>(acc, static_cast<Idx>(args)...);
}
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 2)>>
ALPAKA_FN_ACC inline auto uniform_elements_z(TAcc const& acc, TArgs... args) {
return detail::UniformElementsAlong<TAcc, alpaka::Dim<TAcc>::value - 3>(acc, static_cast<Idx>(args)...);
}
namespace detail {
/* UniformElementsND
*
* `UniformElementsND(acc, extent)` returns an N-dimensional iteratable range that spans the element indices
* required to cover the given problem size, indicated by `extent`.
*
* `uniform_elements_nd(acc, ...)` is an alias for `UniformElementsND<TAcc>(acc, ...)`.
*
* To cover the problem space, different threads may execute a different number of iterations. As a result, it is not
* safe to call `alpaka::syncBlockThreads()` and other block-level synchronisations within this loop.
* If a block synchronisation is needed, one should split the loop into an outer loop over the groups and an inner
* loop over each group's elements, and synchronise only in the outer loop:
*
* for (auto group0 : uniform_groups_along<0>(acc, extent[0])) {
* for (auto group1 : uniform_groups_along<1>(acc, extent[1])) {
* for (auto element0 : uniform_group_elements_along<0>(acc, group0, extent[0])) {
* for (auto element1 : uniform_group_elements_along<1>(acc, group1, extent[1])) {
* // first part of the computation
* // no synchronisations here
* ...
* }
* }
* // wait for all threads to complete the first part
* alpaka::syncBlockThreads();
* for (auto element0 : uniform_group_elements_along<0>(acc, group0, extent[0])) {
* for (auto element1 : uniform_group_elements_along<1>(acc, group1, extent[1])) {
* // second part of the computation
* // no synchronisations here
* ...
* }
* }
* // wait for all threads to complete the second part
* alpaka::syncBlockThreads();
* ...
* }
* }
*
* For more details, see `UniformElementsAlong<TAcc, Dim>(acc, ...)`.
*/
template <typename TAcc, typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 0)>>
class UniformElementsND {
public:
using Dim = alpaka::Dim<TAcc>;
using Vec = alpaka::Vec<Dim, Idx>;
ALPAKA_FN_ACC inline UniformElementsND(TAcc const& acc)
: elements_{alpaka::getWorkDiv<alpaka::Thread, alpaka::Elems>(acc)},
thread_{alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc) * elements_},
stride_{alpaka::getWorkDiv<alpaka::Grid, alpaka::Threads>(acc) * elements_},
extent_{stride_} {}
ALPAKA_FN_ACC inline UniformElementsND(TAcc const& acc, Vec extent)
: elements_{alpaka::getWorkDiv<alpaka::Thread, alpaka::Elems>(acc)},
thread_{alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc) * elements_},
stride_{alpaka::getWorkDiv<alpaka::Grid, alpaka::Threads>(acc) * elements_},
extent_{extent} {}
// tag used to construct an end iterator
struct at_end_t {};
class const_iterator;
using iterator = const_iterator;
ALPAKA_FN_ACC inline const_iterator begin() const {
// check that all dimensions of the current thread index are within the extent
if ((thread_ < extent_).all()) {
// construct an iterator pointing to the first element to be processed by the current thread
return const_iterator{this, thread_};
} else {
// construct an end iterator, pointing post the end of the extent
return const_iterator{this, at_end_t{}};
}
}
ALPAKA_FN_ACC inline const_iterator end() const {
// construct an end iterator, pointing post the end of the extent
return const_iterator{this, at_end_t{}};
}
class const_iterator {
friend class UniformElementsND;
public:
ALPAKA_FN_ACC inline Vec operator*() const { return index_; }
// pre-increment the iterator
ALPAKA_FN_ACC constexpr inline const_iterator operator++() {
increment();
return *this;
}
// post-increment the iterator
ALPAKA_FN_ACC constexpr inline const_iterator operator++(int) {
const_iterator old = *this;
increment();
return old;
}
ALPAKA_FN_ACC constexpr inline bool operator==(const_iterator const& other) const {
return (index_ == other.index_);
}
ALPAKA_FN_ACC constexpr inline bool operator!=(const_iterator const& other) const {
return not(*this == other);
}
private:
// construct an iterator pointing to the first element to be processed by the current thread
ALPAKA_FN_ACC inline const_iterator(UniformElementsND const* loop, Vec first)
: loop_{loop},
first_{alpaka::elementwise_min(first, loop->extent_)},
range_{alpaka::elementwise_min(first + loop->elements_, loop->extent_)},
index_{first_} {}
// construct an end iterator, pointing post the end of the extent
ALPAKA_FN_ACC inline const_iterator(UniformElementsND const* loop, at_end_t const&)
: loop_{loop}, first_{loop_->extent_}, range_{loop_->extent_}, index_{loop_->extent_} {}
template <size_t I>
ALPAKA_FN_ACC inline constexpr bool nth_elements_loop() {
bool overflow = false;
++index_[I];
if (index_[I] >= range_[I]) {
index_[I] = first_[I];
overflow = true;
}
return overflow;
}
template <size_t N>
ALPAKA_FN_ACC inline constexpr bool do_elements_loops() {
if constexpr (N == 0) {
// overflow
return true;
} else {
if (not nth_elements_loop<N - 1>()) {
return false;
} else {
return do_elements_loops<N - 1>();
}
}
}
template <size_t I>
ALPAKA_FN_ACC inline constexpr bool nth_strided_loop() {
bool overflow = false;
first_[I] += loop_->stride_[I];
if (first_[I] >= loop_->extent_[I]) {
first_[I] = loop_->thread_[I];
overflow = true;
}
index_[I] = first_[I];
range_[I] = std::min(first_[I] + loop_->elements_[I], loop_->extent_[I]);
return overflow;
}
template <size_t N>
ALPAKA_FN_ACC inline constexpr bool do_strided_loops() {
if constexpr (N == 0) {
// overflow
return true;
} else {
if (not nth_strided_loop<N - 1>()) {
return false;
} else {
return do_strided_loops<N - 1>();
}
}
}
// increment the iterator
ALPAKA_FN_ACC inline constexpr void increment() {
if constexpr (requires_single_thread_per_block_v<TAcc>) {
// linear N-dimensional loops over the elements associated to the thread;
// do_elements_loops<>() returns true if any of those loops overflows
if (not do_elements_loops<Dim::value>()) {
// the elements loops did not overflow, return the next index
return;
}
}
// strided N-dimensional loop over the threads in the kernel launch grid;
// do_strided_loops<>() returns true if any of those loops overflows
if (not do_strided_loops<Dim::value>()) {
// the strided loops did not overflow, return the next index
return;
}
// the iterator has reached or passed the end of the extent, clamp it to the extent
first_ = loop_->extent_;
range_ = loop_->extent_;
index_ = loop_->extent_;
}
// const pointer to the UniformElementsND that the iterator refers to
const UniformElementsND* loop_;
// modified by the pre/post-increment operator
Vec first_; // first element processed by this thread
Vec range_; // last element processed by this thread
Vec index_; // current element processed by this thread
};
private:
const Vec elements_;
const Vec thread_;
const Vec stride_;
const Vec extent_;
};
} // namespace detail
/* uniform_elements_nd
*
* `uniform_elements_nd(acc, ...)` is a shorthand for `detail::UniformElementsND<TAcc>(acc, ...)`.
*/
template <typename TAcc, typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 0)>>
ALPAKA_FN_ACC inline auto uniform_elements_nd(TAcc const& acc) {
return detail::UniformElementsND<TAcc>(acc);
}
template <typename TAcc, typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 0)>>
ALPAKA_FN_ACC inline auto uniform_elements_nd(TAcc const& acc, alpaka::Vec<alpaka::Dim<TAcc>, Idx> extent) {
return detail::UniformElementsND<TAcc>(acc, extent);
}
namespace detail {
/* UniformGroupsAlong
*
* `UniformGroupsAlong<Dim>(acc, elements)` returns a one-dimensional iteratable range than spans the group indices
* required to cover the given problem size along the `Dim` dimension, in units of the block size. `elements`
* indicates the total number of elements, across all groups; if not specified, it defaults to the kernel grid size
* along the `Dim` dimension.
*
* `uniform_groups_along<Dim>(acc, ...)` is a shorthand for `UniformGroupsAlong<TAcc, Dim>(acc, ...)` that can infer
* the accelerator type from the argument.
*
* In a 1-dimensional kernel, `uniform_groups(acc, ...)` is a shorthand for `UniformGroupsAlong<Tacc, 0>(acc, ...)`.
*
* In an N-dimensional kernel, dimension 0 is the one that increases more slowly (e.g. the outer loop), followed by
* dimension 1, up to dimension N-1 that increases fastest (e.g. the inner loop).
* For convenience when converting CUDA or HIP code, `uniform_groups_x(acc, ...)`, `_y` and `_z` are shorthands for
* `UniformGroupsAlong<TAcc, N-1>(acc, ...)`, `<N-2>` and `<N-3>`.
*
* `uniform_groups_along<Dim>(acc, ...)` should be called consistently by all the threads in a block. All threads in a
* block see the same loop iterations, while threads in different blocks may see a different number of iterations.
* If the work division has more blocks than the required number of groups, the first blocks will perform one
* iteration of the loop, while the other blocks will exit the loop immediately.
* If the work division has less blocks than the required number of groups, some of the blocks will perform more than
* one iteration, in order to cover then whole problem space.
*
* If the problem size is not a multiple of the block size, the last group will process a number of elements smaller
* than the block size. However, also in this case all threads in the block will execute the same number of iterations
* of this loop: this makes it safe to use block-level synchronisations in the loop body. It is left to the inner loop
* (or the user) to ensure that only the correct number of threads process any data; this logic is implemented by
* `uniform_group_elements_along<Dim>(acc, group, elements)`.
*
* For example, if the block size is 64 and there are 400 elements
*
* for (auto group: uniform_groups_along<Dim>(acc, 400)
*
* will return the group range from 0 to 6, distributed across all blocks in the work division: group 0 should cover
* the elements from 0 to 63, group 1 should cover the elements from 64 to 127, etc., until the last group, group 6,
* should cover the elements from 384 to 399. All the threads of the block will process this last group; it is up to
* the inner loop to not process the non-existing elements after 399.
*
* If the work division has more than 7 blocks, the first 7 will perform one iteration of the loop, while the other
* blocks will exit the loop immediately. For example if the work division has 8 blocks, the blocks from 0 to 6 will
* process one group while block 7 will no process any.
*
* If the work division has less than 7 blocks, some of the blocks will perform more than one iteration of the loop,
* in order to cover then whole problem space. For example if the work division has 4 blocks, block 0 will process the
* groups 0 and 4, block 1 will process groups 1 and 5, group 2 will process groups 2 and 6, and block 3 will process
* group 3.
*
* See `UniformElementsAlong<TAcc, Dim>(acc, ...)` for a concrete example using `uniform_groups_along<Dim>` and
* `uniform_group_elements_along<Dim>`.
*/
template <typename TAcc,
std::size_t Dim,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and alpaka::Dim<TAcc>::value >= Dim>>
class UniformGroupsAlong {
public:
ALPAKA_FN_ACC inline UniformGroupsAlong(TAcc const& acc)
: first_{alpaka::getIdx<alpaka::Grid, alpaka::Blocks>(acc)[Dim]},
stride_{alpaka::getWorkDiv<alpaka::Grid, alpaka::Blocks>(acc)[Dim]},
extent_{stride_} {}
// extent is the total number of elements (not blocks)
ALPAKA_FN_ACC inline UniformGroupsAlong(TAcc const& acc, Idx extent)
: first_{alpaka::getIdx<alpaka::Grid, alpaka::Blocks>(acc)[Dim]},
stride_{alpaka::getWorkDiv<alpaka::Grid, alpaka::Blocks>(acc)[Dim]},
extent_{divide_up_by(extent, alpaka::getWorkDiv<alpaka::Block, alpaka::Elems>(acc)[Dim])} {}
class const_iterator;
using iterator = const_iterator;
ALPAKA_FN_ACC inline const_iterator begin() const { return const_iterator(stride_, extent_, first_); }
ALPAKA_FN_ACC inline const_iterator end() const { return const_iterator(stride_, extent_, extent_); }
class const_iterator {
friend class UniformGroupsAlong;
ALPAKA_FN_ACC inline const_iterator(Idx stride, Idx extent, Idx first)
: stride_{stride}, extent_{extent}, first_{std::min(first, extent)} {}
public:
ALPAKA_FN_ACC inline Idx operator*() const { return first_; }
// pre-increment the iterator
ALPAKA_FN_ACC inline const_iterator& operator++() {
// increment the first-element-in-block index by the grid stride
first_ += stride_;
if (first_ < extent_)
return *this;
// the iterator has reached or passed the end of the extent, clamp it to the extent
first_ = extent_;
return *this;
}
// post-increment the iterator
ALPAKA_FN_ACC inline const_iterator operator++(int) {
const_iterator old = *this;
++(*this);
return old;
}
ALPAKA_FN_ACC inline bool operator==(const_iterator const& other) const { return (first_ == other.first_); }
ALPAKA_FN_ACC inline bool operator!=(const_iterator const& other) const { return not(*this == other); }
private:
// non-const to support iterator copy and assignment
Idx stride_;
Idx extent_;
// modified by the pre/post-increment operator
Idx first_;
};
private:
const Idx first_;
const Idx stride_;
const Idx extent_;
};
} // namespace detail
/* uniform_groups
*
* `uniform_groups(acc, elements)` returns a one-dimensional iteratable range than spans the group indices required to
* cover the given problem size, in units of the block size. `elements` indicates the total number of elements, across
* all groups; if not specified, it defaults to the kernel grid size.
*
* `uniform_groups(acc, ...)` is a shorthand for `detail::UniformGroupsAlong<TAcc, 0>(acc, ...)`.
*
* `uniform_groups(acc, ...)` should be called consistently by all the threads in a block. All threads in a block see
* the same loop iterations, while threads in different blocks may see a different number of iterations.
* If the work division has more blocks than the required number of groups, the first blocks will perform one
* iteration of the loop, while the other blocks will exit the loop immediately.
* If the work division has less blocks than the required number of groups, some of the blocks will perform more than
* one iteration, in order to cover then whole problem space.
*
* If the problem size is not a multiple of the block size, the last group will process a number of elements smaller
* than the block size. However, also in this case all threads in the block will execute the same number of iterations
* of this loop: this makes it safe to use block-level synchronisations in the loop body. It is left to the inner loop
* (or the user) to ensure that only the correct number of threads process any data; this logic is implemented by
* `uniform_group_elements(acc, group, elements)`.
*
* For example, if the block size is 64 and there are 400 elements
*
* for (auto group: uniform_groups(acc, 400)
*
* will return the group range from 0 to 6, distributed across all blocks in the work division: group 0 should cover
* the elements from 0 to 63, group 1 should cover the elements from 64 to 127, etc., until the last group, group 6,
* should cover the elements from 384 to 399. All the threads of the block will process this last group; it is up to
* the inner loop to not process the non-existing elements after 399.
*
* If the work division has more than 7 blocks, the first 7 will perform one iteration of the loop, while the other
* blocks will exit the loop immediately. For example if the work division has 8 blocks, the blocks from 0 to 6 will
* process one group while block 7 will no process any.
*
* If the work division has less than 7 blocks, some of the blocks will perform more than one iteration of the loop,
* in order to cover then whole problem space. For example if the work division has 4 blocks, block 0 will process the
* groups 0 and 4, block 1 will process groups 1 and 5, group 2 will process groups 2 and 6, and block 3 will process
* group 3.
*
* See `uniform_elements(acc, ...)` for a concrete example using `uniform_groups` and `uniform_group_elements`.
*
* Note that `uniform_groups(acc, ...)` is only suitable for one-dimensional kernels. For N-dimensional kernels, use
* - `uniform_groups_along<Dim>(acc, ...)` to perform the iteration explicitly along dimension `Dim`;
* - `uniform_groups_x(acc, ...)`, `uniform_groups_y(acc, ...)`, or `uniform_groups_z(acc, ...)` to loop
* along the fastest, second-fastest, or third-fastest dimension.
*/
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and alpaka::Dim<TAcc>::value == 1>>
ALPAKA_FN_ACC inline auto uniform_groups(TAcc const& acc, TArgs... args) {
return detail::UniformGroupsAlong<TAcc, 0>(acc, static_cast<Idx>(args)...);
}
/* uniform_groups_along<Dim>
*
* `uniform_groups_along<Dim>(acc, ...)` is a shorthand for `detail::UniformGroupsAlong<TAcc, Dim>(acc, ...)` that can infer
* the accelerator type from the argument.
*/
template <typename TAcc,
std::size_t Dim,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and alpaka::Dim<TAcc>::value >= Dim>>
ALPAKA_FN_ACC inline auto uniform_groups_along(TAcc const& acc, TArgs... args) {
return detail::UniformGroupsAlong<TAcc, Dim>(acc, static_cast<Idx>(args)...);
}
/* uniform_groups_x, _y, _z
*
* Like `uniform_groups` for N-dimensional kernels, along the fastest, second-fastest, and third-fastest dimensions.
*/
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 0)>>
ALPAKA_FN_ACC inline auto uniform_groups_x(TAcc const& acc, TArgs... args) {
return detail::UniformGroupsAlong<TAcc, alpaka::Dim<TAcc>::value - 1>(acc, static_cast<Idx>(args)...);
}
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 1)>>
ALPAKA_FN_ACC inline auto uniform_groups_y(TAcc const& acc, TArgs... args) {
return detail::UniformGroupsAlong<TAcc, alpaka::Dim<TAcc>::value - 2>(acc, static_cast<Idx>(args)...);
}
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 2)>>
ALPAKA_FN_ACC inline auto uniform_groups_z(TAcc const& acc, TArgs... args) {
return detail::UniformGroupsAlong<TAcc, alpaka::Dim<TAcc>::value - 3>(acc, static_cast<Idx>(args)...);
}
namespace detail {
/* UniformGroupElementsAlong
*
* `UniformGroupElementsAlong<TAcc, Dim>(acc, group, elements)` returns a one-dimensional iteratable range that spans
* all the elements within the given `group` along dimension `Dim`, as obtained from `UniformGroupsAlong<Dim>`, up to
* `elements` (exclusive). `elements` indicates the total number of elements across all groups; if not specified, it
* defaults to the kernel grid size.
*
* `uniform_group_elements_along<Dim>(acc, ...)` is a shorthand for `UniformGroupElementsAlong<TAcc, Dim>(acc, ...)`
* that can infer the accelerator type from the argument.
*
* In a 1-dimensional kernel, `uniform_group_elements(acc, ...)` is a shorthand for
* `UniformGroupElementsAlong<0>(acc, ...)`.
*
* In an N-dimensional kernel, dimension 0 is the one that increases more slowly (e.g. the outer loop), followed by
* dimension 1, up to dimension N-1 that increases fastest (e.g. the inner loop).
* For convenience when converting CUDA or HIP code, `uniform_group_elements_x(acc, ...)`, `_y` and `_z` are
* shorthands for `UniformGroupElementsAlong<TAcc, N-1>(acc, ...)`, `<N-2>` and `<N-3>`.
*
* Iterating over the range yields values of type `ElementIndex`, that provide the `.global` and `.local` indices of
* the corresponding element. The global index spans a subset of the range from 0 to `elements` (excluded), while the
* local index spans the range from 0 to the block size (excluded).
*
* The loop will perform a number of iterations up to the number of elements per thread, stopping earlier if the
* global element index reaches `elements`.
*
* If the problem size is not a multiple of the block size, different threads may execute a different number of
* iterations. As a result, it is not safe to call `alpaka::syncBlockThreads()` within this loop. If a block
* synchronisation is needed, one should split the loop, and synchronise the threads between the loops.
* See `UniformElementsAlong<Dim>(acc, ...)` for a concrete example using `uniform_groups_along<Dim>` and
* `uniform_group_elements_along<Dim>`.
*
* Warp-level primitives require that all threads in the warp execute the same function. If `elements` is not a
* multiple of the warp size, some of the warps may be incomplete, leading to undefined behaviour - for example, the
* kernel may hang. To avoid this problem, round up `elements` to a multiple of the warp size, and check the element
* index explicitly inside the loop:
*
* for (auto element : uniform_group_elements_along<N-1>(acc, group, round_up_by(elements, alpaka::warp::getSize(acc)))) {
* bool flag = false;
* if (element < elements) {
* // do some work and compute a result flag only for the valid elements
* flag = do_some_work();
* }
* // check if any valid element had a positive result
* if (alpaka::warp::any(acc, flag)) {
* // ...
* }
* }
*
* Note that the use of warp-level primitives is usually suitable only for the fastest-looping dimension, `N-1`.
*/
template <typename TAcc,
std::size_t Dim,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and alpaka::Dim<TAcc>::value >= Dim>>
class UniformGroupElementsAlong {
public:
ALPAKA_FN_ACC inline UniformGroupElementsAlong(TAcc const& acc, Idx block)
: first_{block * alpaka::getWorkDiv<alpaka::Block, alpaka::Elems>(acc)[Dim]},
local_{alpaka::getIdx<alpaka::Block, alpaka::Threads>(acc)[Dim] *
alpaka::getWorkDiv<alpaka::Thread, alpaka::Elems>(acc)[Dim]},
range_{local_ + alpaka::getWorkDiv<alpaka::Thread, alpaka::Elems>(acc)[Dim]} {}
ALPAKA_FN_ACC inline UniformGroupElementsAlong(TAcc const& acc, Idx block, Idx extent)
: first_{block * alpaka::getWorkDiv<alpaka::Block, alpaka::Elems>(acc)[Dim]},
local_{std::min(extent - first_,
alpaka::getIdx<alpaka::Block, alpaka::Threads>(acc)[Dim] *
alpaka::getWorkDiv<alpaka::Thread, alpaka::Elems>(acc)[Dim])},
range_{std::min(extent - first_, local_ + alpaka::getWorkDiv<alpaka::Thread, alpaka::Elems>(acc)[Dim])} {}
class const_iterator;
using iterator = const_iterator;
ALPAKA_FN_ACC inline const_iterator begin() const { return const_iterator(local_, first_, range_); }
ALPAKA_FN_ACC inline const_iterator end() const { return const_iterator(range_, first_, range_); }
class const_iterator {
friend class UniformGroupElementsAlong;
ALPAKA_FN_ACC inline const_iterator(Idx local, Idx first, Idx range)
: index_{local}, first_{first}, range_{range} {}
public:
ALPAKA_FN_ACC inline ElementIndex operator*() const { return ElementIndex{index_ + first_, index_}; }
// pre-increment the iterator
ALPAKA_FN_ACC inline const_iterator& operator++() {
if constexpr (requires_single_thread_per_block_v<TAcc>) {
// increment the index along the elements processed by the current thread
++index_;
if (index_ < range_)
return *this;
}
// the iterator has reached or passed the end of the extent, clamp it to the extent
index_ = range_;
return *this;
}
// post-increment the iterator
ALPAKA_FN_ACC inline const_iterator operator++(int) {
const_iterator old = *this;
++(*this);
return old;
}
ALPAKA_FN_ACC inline bool operator==(const_iterator const& other) const { return (index_ == other.index_); }
ALPAKA_FN_ACC inline bool operator!=(const_iterator const& other) const { return not(*this == other); }
private:
// modified by the pre/post-increment operator
Idx index_;
// non-const to support iterator copy and assignment
Idx first_;
Idx range_;
};
private:
const Idx first_;
const Idx local_;
const Idx range_;
};
} // namespace detail
/* uniform_group_elements
*
* `uniform_group_elements(acc, group, elements)` returns a one-dimensional iteratable range that spans all the
* elements within the given `group`, as obtained from `uniform_groups`, up to `elements` (exclusive). `elements`
* indicates the total number of elements across all groups; if not specified, it defaults to the kernel grid size.
*
* `uniform_group_elements(acc, ...)` is a shorthand for `detail::UniformGroupElementsAlong<0>(acc, ...)`.
*
* Iterating over the range yields values of type `ElementIndex`, that provide the `.global` and `.local` indices of
* the corresponding element. The global index spans a subset of the range from 0 to `elements` (excluded), while the
* local index spans the range from 0 to the block size (excluded).
*
* The loop will perform a number of iterations up to the number of elements per thread, stopping earlier if the
* global element index reaches `elements`.
*
* If the problem size is not a multiple of the block size, different threads may execute a different number of
* iterations. As a result, it is not safe to call `alpaka::syncBlockThreads()` within this loop. If a block
* synchronisation is needed, one should split the loop, and synchronise the threads between the loops.
* See `uniform_elements(acc, ...)` for a concrete example using `uniform_groups` and `uniform_group_elements`.
*
* Warp-level primitives require that all threads in the warp execute the same function. If `elements` is not a
* multiple of the warp size, some of the warps may be incomplete, leading to undefined behaviour - for example, the
* kernel may hang. To avoid this problem, round up `elements` to a multiple of the warp size, and check the element
* index explicitly inside the loop:
*
* for (auto element : uniform_group_elements(acc, group, round_up_by(elements, alpaka::warp::getSize(acc)))) {
* bool flag = false;
* if (element < elements) {
* // do some work and compute a result flag only for the valid elements
* flag = do_some_work();
* }
* // check if any valid element had a positive result
* if (alpaka::warp::any(acc, flag)) {
* // ...
* }
* }
*
* Note that `uniform_group_elements(acc, ...)` is only suitable for one-dimensional kernels. For N-dimensional
* kernels, use
* - `detail::UniformGroupElementsAlong<Dim>(acc, ...)` to perform the iteration explicitly along dimension `Dim`;
* - `uniform_group_elements_x(acc, ...)`, `uniform_group_elements_y(acc, ...)`, or
* `uniform_group_elements_z(acc, ...)` to loop along the fastest, second-fastest, or third-fastest dimension.
*/
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and alpaka::Dim<TAcc>::value == 1>>
ALPAKA_FN_ACC inline auto uniform_group_elements(TAcc const& acc, TArgs... args) {
return detail::UniformGroupElementsAlong<TAcc, 0>(acc, static_cast<Idx>(args)...);
}
/* uniform_group_elements_along<Dim>
*
* `uniform_group_elements_along<Dim>(acc, ...)` is a shorthand for `detail::UniformGroupElementsAlong<TAcc, Dim>(acc, ...)`
* that can infer the accelerator type from the argument.
*/
template <typename TAcc,
std::size_t Dim,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and alpaka::Dim<TAcc>::value >= Dim>>
ALPAKA_FN_ACC inline auto uniform_group_elements_along(TAcc const& acc, TArgs... args) {
return detail::UniformGroupElementsAlong<TAcc, Dim>(acc, static_cast<Idx>(args)...);
}
/* uniform_group_elements_x, _y, _z
*
* Like `uniform_group_elements` for N-dimensional kernels, along the fastest, second-fastest, and third-fastest
* dimensions.
*/
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 0)>>
ALPAKA_FN_ACC inline auto uniform_group_elements_x(TAcc const& acc, TArgs... args) {
return detail::UniformGroupElementsAlong<TAcc, alpaka::Dim<TAcc>::value - 1>(acc, static_cast<Idx>(args)...);
}
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 1)>>
ALPAKA_FN_ACC inline auto uniform_group_elements_y(TAcc const& acc, TArgs... args) {
return detail::UniformGroupElementsAlong<TAcc, alpaka::Dim<TAcc>::value - 2>(acc, static_cast<Idx>(args)...);
}
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 2)>>
ALPAKA_FN_ACC inline auto uniform_group_elements_z(TAcc const& acc, TArgs... args) {
return detail::UniformGroupElementsAlong<TAcc, alpaka::Dim<TAcc>::value - 3>(acc, static_cast<Idx>(args)...);
}
namespace detail {
/* IndependentGroupsAlong
*
* `IndependentGroupsAlong<TAcc, Dim>(acc, groups)` returns a one-dimensional iteratable range than spans the group
* indices from 0 to `groups`; the groups are assigned to the blocks along the `Dim` dimension. If `groups` is not
* specified, it defaults to the number of blocks along the `Dim` dimension.
*
* `independent_groups_along<Dim>(acc, ...)` is a shorthand for `IndependentGroupsAlong<TAcc, Dim>(acc, ...)` that can
* infer the accelerator type from the argument.
*
* In a 1-dimensional kernel, `independent_groups(acc, ...)` is a shorthand for
* `IndependentGroupsAlong<TAcc, 0>(acc, ...)`.
*
* In an N-dimensional kernel, dimension 0 is the one that increases more slowly (e.g. the outer loop), followed by
* dimension 1, up to dimension N-1 that increases fastest (e.g. the inner loop).
* For convenience when converting CUDA or HIP code, `independent_groups_x(acc, ...)`, `_y` and `_z` are shorthands
* for `IndependentGroupsAlong<TAcc, N-1>(acc, ...)`, `<N-2>` and `<N-3>`.
*
* `independent_groups_along<Dim>(acc, ...)` should be called consistently by all the threads in a block. All threads
* in a block see the same loop iterations, while threads in different blocks may see a different number of iterations.
* If the work division has more blocks than the required number of groups, the first blocks will perform one
* iteration of the loop, while the other blocks will exit the loop immediately.
* If the work division has less blocks than the required number of groups, some of the blocks will perform more than
* one iteration, in order to cover then whole problem space.
*
* For example,
*
* for (auto group: independent_groups_along<Dim>(acc, 7))
*
* will return the group range from 0 to 6, distributed across all blocks in the work division.
* If the work division has more than 7 blocks, the first 7 will perform one iteration of the loop, while the other
* blocks will exit the loop immediately. For example if the work division has 8 blocks, the blocks from 0 to 6 will
* process one group while block 7 will no process any.
* If the work division has less than 7 blocks, some of the blocks will perform more than one iteration of the loop,
* in order to cover then whole problem space. For example if the work division has 4 blocks, block 0 will process the
* groups 0 and 4, block 1 will process groups 1 and 5, group 2 will process groups 2 and 6, and block 3 will process
* group 3.
*/
template <typename TAcc,
std::size_t Dim,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and alpaka::Dim<TAcc>::value >= Dim>>
class IndependentGroupsAlong {
public:
ALPAKA_FN_ACC inline IndependentGroupsAlong(TAcc const& acc)
: first_{alpaka::getIdx<alpaka::Grid, alpaka::Blocks>(acc)[Dim]},
stride_{alpaka::getWorkDiv<alpaka::Grid, alpaka::Blocks>(acc)[Dim]},
extent_{stride_} {}
ALPAKA_FN_ACC inline IndependentGroupsAlong(TAcc const& acc, Idx groups)
: first_{alpaka::getIdx<alpaka::Grid, alpaka::Blocks>(acc)[Dim]},
stride_{alpaka::getWorkDiv<alpaka::Grid, alpaka::Blocks>(acc)[Dim]},
extent_{groups} {}
class const_iterator;
using iterator = const_iterator;
ALPAKA_FN_ACC inline const_iterator begin() const { return const_iterator(stride_, extent_, first_); }
ALPAKA_FN_ACC inline const_iterator end() const { return const_iterator(stride_, extent_, extent_); }
class const_iterator {
friend class IndependentGroupsAlong;
ALPAKA_FN_ACC inline const_iterator(Idx stride, Idx extent, Idx first)
: stride_{stride}, extent_{extent}, first_{std::min(first, extent)} {}
public:
ALPAKA_FN_ACC inline Idx operator*() const { return first_; }
// pre-increment the iterator
ALPAKA_FN_ACC inline const_iterator& operator++() {
// increment the first-element-in-block index by the grid stride
first_ += stride_;
if (first_ < extent_)
return *this;
// the iterator has reached or passed the end of the extent, clamp it to the extent
first_ = extent_;
return *this;
}
// post-increment the iterator
ALPAKA_FN_ACC inline const_iterator operator++(int) {
const_iterator old = *this;
++(*this);
return old;
}
ALPAKA_FN_ACC inline bool operator==(const_iterator const& other) const { return (first_ == other.first_); }
ALPAKA_FN_ACC inline bool operator!=(const_iterator const& other) const { return not(*this == other); }
private:
// non-const to support iterator copy and assignment
Idx stride_;
Idx extent_;
// modified by the pre/post-increment operator
Idx first_;
};
private:
const Idx first_;
const Idx stride_;
const Idx extent_;
};
} // namespace detail
/* independent_groups
*
* `independent_groups(acc, groups)` returns a one-dimensional iteratable range than spans the group indices from 0 to
* `groups`. If `groups` is not specified, it defaults to the number of blocks.
*
* `independent_groups(acc, ...)` is a shorthand for `detail::IndependentGroupsAlong<TAcc, 0>(acc, ...)`.
*
* `independent_groups(acc, ...)` should be called consistently by all the threads in a block. All threads in a block
* see the same loop iterations, while threads in different blocks may see a different number of iterations.
* If the work division has more blocks than the required number of groups, the first blocks will perform one
* iteration of the loop, while the other blocks will exit the loop immediately.
* If the work division has less blocks than the required number of groups, some of the blocks will perform more than
* one iteration, in order to cover then whole problem space.
*
* For example,
*
* for (auto group: independent_groups(acc, 7))
*
* will return the group range from 0 to 6, distributed across all blocks in the work division.
* If the work division has more than 7 blocks, the first 7 will perform one iteration of the loop, while the other
* blocks will exit the loop immediately. For example if the work division has 8 blocks, the blocks from 0 to 6 will
* process one group while block 7 will no process any.
* If the work division has less than 7 blocks, some of the blocks will perform more than one iteration of the loop,
* in order to cover then whole problem space. For example if the work division has 4 blocks, block 0 will process the
* groups 0 and 4, block 1 will process groups 1 and 5, group 2 will process groups 2 and 6, and block 3 will process
* group 3.
*
* Note that `independent_groups(acc, ...)` is only suitable for one-dimensional kernels. For N-dimensional kernels,
* use
* - `independent_groups_along<Dim>(acc, ...)` to perform the iteration explicitly along dimension `Dim`;
* - `independent_groups_x(acc, ...)`, `independent_groups_y(acc, ...)`, or `independent_groups_z(acc, ...)` to loop
* along the fastest, second-fastest, or third-fastest dimension.
*/
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and alpaka::Dim<TAcc>::value == 1>>
ALPAKA_FN_ACC inline auto independent_groups(TAcc const& acc, TArgs... args) {
return detail::IndependentGroupsAlong<TAcc, 0>(acc, static_cast<Idx>(args)...);
}
/* independent_groups_along<Dim>
*
* `independent_groups_along<Dim>(acc, ...)` is a shorthand for `detail::IndependentGroupsAlong<TAcc, Dim>(acc, ...)` that can
* infer the accelerator type from the argument.
*/
template <typename TAcc,
std::size_t Dim,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and alpaka::Dim<TAcc>::value >= Dim>>
ALPAKA_FN_ACC inline auto independent_groups_along(TAcc const& acc, TArgs... args) {
return detail::IndependentGroupsAlong<TAcc, Dim>(acc, static_cast<Idx>(args)...);
}
/* independent_groups_x, _y, _z
*
* Like `independent_groups` for N-dimensional kernels, along the fastest, second-fastest, and third-fastest
* dimensions.
*/
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 0)>>
ALPAKA_FN_ACC inline auto independent_groups_x(TAcc const& acc, TArgs... args) {
return detail::IndependentGroupsAlong<TAcc, alpaka::Dim<TAcc>::value - 1>(acc, static_cast<Idx>(args)...);
}
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 1)>>
ALPAKA_FN_ACC inline auto independent_groups_y(TAcc const& acc, TArgs... args) {
return detail::IndependentGroupsAlong<TAcc, alpaka::Dim<TAcc>::value - 2>(acc, static_cast<Idx>(args)...);
}
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 2)>>
ALPAKA_FN_ACC inline auto independent_groups_z(TAcc const& acc, TArgs... args) {
return detail::IndependentGroupsAlong<TAcc, alpaka::Dim<TAcc>::value - 3>(acc, static_cast<Idx>(args)...);
}
namespace detail {
/* IndependentGroupElementsAlong
*
* `independent_group_elements_along<Dim>(acc, ...)` is a shorthand for
* `IndependentGroupElementsAlong<TAcc, Dim>(acc, ...)` that can infer the accelerator type from the argument.
*/
template <typename TAcc,
std::size_t Dim,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and alpaka::Dim<TAcc>::value >= Dim>>
class IndependentGroupElementsAlong {
public:
ALPAKA_FN_ACC inline IndependentGroupElementsAlong(TAcc const& acc)
: elements_{alpaka::getWorkDiv<alpaka::Thread, alpaka::Elems>(acc)[Dim]},
thread_{alpaka::getIdx<alpaka::Block, alpaka::Threads>(acc)[Dim] * elements_},
stride_{alpaka::getWorkDiv<alpaka::Block, alpaka::Threads>(acc)[Dim] * elements_},
extent_{stride_} {}
ALPAKA_FN_ACC inline IndependentGroupElementsAlong(TAcc const& acc, Idx extent)
: elements_{alpaka::getWorkDiv<alpaka::Thread, alpaka::Elems>(acc)[Dim]},
thread_{alpaka::getIdx<alpaka::Block, alpaka::Threads>(acc)[Dim] * elements_},
stride_{alpaka::getWorkDiv<alpaka::Block, alpaka::Threads>(acc)[Dim] * elements_},
extent_{extent} {}
ALPAKA_FN_ACC inline IndependentGroupElementsAlong(TAcc const& acc, Idx first, Idx extent)
: elements_{alpaka::getWorkDiv<alpaka::Thread, alpaka::Elems>(acc)[Dim]},
thread_{alpaka::getIdx<alpaka::Block, alpaka::Threads>(acc)[Dim] * elements_ + first},
stride_{alpaka::getWorkDiv<alpaka::Block, alpaka::Threads>(acc)[Dim] * elements_},
extent_{extent} {}
class const_iterator;
using iterator = const_iterator;
ALPAKA_FN_ACC inline const_iterator begin() const { return const_iterator(elements_, stride_, extent_, thread_); }
ALPAKA_FN_ACC inline const_iterator end() const { return const_iterator(elements_, stride_, extent_, extent_); }
class const_iterator {
friend class IndependentGroupElementsAlong;
ALPAKA_FN_ACC inline const_iterator(Idx elements, Idx stride, Idx extent, Idx first)
: elements_{elements},
stride_{stride},
extent_{extent},
first_{std::min(first, extent)},
index_{first_},
range_{std::min(first + elements, extent)} {}
public:
ALPAKA_FN_ACC inline Idx operator*() const { return index_; }
// pre-increment the iterator
ALPAKA_FN_ACC inline const_iterator& operator++() {
if constexpr (requires_single_thread_per_block_v<TAcc>) {
// increment the index along the elements processed by the current thread
++index_;
if (index_ < range_)
return *this;
}
// increment the thread index with the block stride
first_ += stride_;
index_ = first_;
range_ = std::min(first_ + elements_, extent_);
if (index_ < extent_)
return *this;
// the iterator has reached or passed the end of the extent, clamp it to the extent
first_ = extent_;
index_ = extent_;
range_ = extent_;
return *this;
}
// post-increment the iterator
ALPAKA_FN_ACC inline const_iterator operator++(int) {
const_iterator old = *this;
++(*this);
return old;
}
ALPAKA_FN_ACC inline bool operator==(const_iterator const& other) const {
return (index_ == other.index_) and (first_ == other.first_);
}
ALPAKA_FN_ACC inline bool operator!=(const_iterator const& other) const { return not(*this == other); }
private:
// non-const to support iterator copy and assignment
Idx elements_;
Idx stride_;
Idx extent_;
// modified by the pre/post-increment operator
Idx first_;
Idx index_;
Idx range_;
};
private:
const Idx elements_;
const Idx thread_;
const Idx stride_;
const Idx extent_;
};
} // namespace detail
/* independent_group_elements
*/
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and alpaka::Dim<TAcc>::value == 1>>
ALPAKA_FN_ACC inline auto independent_group_elements(TAcc const& acc, TArgs... args) {
return detail::IndependentGroupElementsAlong<TAcc, 0>(acc, static_cast<Idx>(args)...);
}
/* independent_group_elements_along<Dim>
*
* `independent_group_elements_along<Dim>(acc, ...)` is a shorthand for
* `detail::IndependentGroupElementsAlong<TAcc, Dim>(acc, ...)` that can infer the accelerator type from the argument.
*/
template <typename TAcc,
std::size_t Dim,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and alpaka::Dim<TAcc>::value >= Dim>>
ALPAKA_FN_ACC inline auto independent_group_elements_along(TAcc const& acc, TArgs... args) {
return detail::IndependentGroupElementsAlong<TAcc, Dim>(acc, static_cast<Idx>(args)...);
}
/* independent_group_elements_x, _y, _z
*
* Like `independent_group_elements` for N-dimensional kernels, along the fastest, second-fastest, and third-fastest
* dimensions.
*/
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 0)>>
ALPAKA_FN_ACC inline auto independent_group_elements_x(TAcc const& acc, TArgs... args) {
return detail::IndependentGroupElementsAlong<TAcc, alpaka::Dim<TAcc>::value - 1>(acc, static_cast<Idx>(args)...);
}
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 1)>>
ALPAKA_FN_ACC inline auto independent_group_elements_y(TAcc const& acc, TArgs... args) {
return detail::IndependentGroupElementsAlong<TAcc, alpaka::Dim<TAcc>::value - 2>(acc, static_cast<Idx>(args)...);
}
template <typename TAcc,
typename... TArgs,
typename = std::enable_if_t<alpaka::isAccelerator<TAcc> and (alpaka::Dim<TAcc>::value > 2)>>
ALPAKA_FN_ACC inline auto independent_group_elements_z(TAcc const& acc, TArgs... args) {
return detail::IndependentGroupElementsAlong<TAcc, alpaka::Dim<TAcc>::value - 3>(acc, static_cast<Idx>(args)...);
}
/* once_per_grid
*
* `once_per_grid(acc)` returns true for a single thread within the kernel execution grid.
*
* Usually the condition is true for block 0 and thread 0, but these indices should not be relied upon.
*/
template <typename TAcc, typename = std::enable_if_t<alpaka::isAccelerator<TAcc>>>
ALPAKA_FN_ACC inline constexpr bool once_per_grid(TAcc const& acc) {
return alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc) == Vec<alpaka::Dim<TAcc>>::zeros();
}
/* once_per_block
*
* `once_per_block(acc)` returns true for a single thread within the block.
*
* Usually the condition is true for thread 0, but this index should not be relied upon.
*/
template <typename TAcc, typename = std::enable_if_t<alpaka::isAccelerator<TAcc>>>
ALPAKA_FN_ACC inline constexpr bool once_per_block(TAcc const& acc) {
return alpaka::getIdx<alpaka::Block, alpaka::Threads>(acc) == Vec<alpaka::Dim<TAcc>>::zeros();
}
} // namespace cms::alpakatools
#endif // HeterogeneousCore_AlpakaInterface_interface_workdivision_h
|