Back to home page

Project CMSSW displayed by LXR

 
 

    


File indexing completed on 2021-02-14 12:53:33

0001 #ifndef GeometryVector_newBasic3DVector_h
0002 #define GeometryVector_newBasic3DVector_h
0003 
0004 #include "DataFormats/GeometryVector/interface/Basic2DVector.h"
0005 #include "DataFormats/GeometryVector/interface/Theta.h"
0006 #include "DataFormats/GeometryVector/interface/Phi.h"
0007 #include "DataFormats/GeometryVector/interface/PreciseFloatType.h"
0008 #include "DataFormats/GeometryVector/interface/CoordinateSets.h"
0009 #include "DataFormats/Math/interface/ExtVec.h"
0010 #include <iosfwd>
0011 #include <cmath>
0012 
0013 namespace detailsBasic3DVector {
0014   inline float __attribute__((always_inline)) __attribute__((pure)) eta(float x, float y, float z) {
0015     float t(z / std::sqrt(x * x + y * y));
0016     return ::asinhf(t);
0017   }
0018   inline double __attribute__((always_inline)) __attribute__((pure)) eta(double x, double y, double z) {
0019     double t(z / std::sqrt(x * x + y * y));
0020     return ::asinh(t);
0021   }
0022   inline long double __attribute__((always_inline)) __attribute__((pure))
0023   eta(long double x, long double y, long double z) {
0024     long double t(z / std::sqrt(x * x + y * y));
0025     return ::asinhl(t);
0026   }
0027 }  // namespace detailsBasic3DVector
0028 
0029 template <typename T>
0030 class Basic3DVector {
0031 public:
0032   typedef T ScalarType;
0033   typedef Vec4<T> VectorType;
0034   typedef Vec4<T> MathVector;
0035   typedef Geom::Cylindrical2Cartesian<T> Cylindrical;
0036   typedef Geom::Spherical2Cartesian<T> Spherical;
0037   typedef Spherical Polar;  // synonym
0038 
0039   /** default constructor uses default constructor of T to initialize the 
0040    *  components. For built-in floating-point types this means initialization 
0041    * to zero??? (force init to 0)
0042    */
0043   Basic3DVector() : v{0, 0, 0, 0} {}
0044 
0045   /// Copy constructor from same type. Should not be needed but for gcc bug 12685
0046   Basic3DVector(const Basic3DVector& p) : v(p.v) {}
0047 
0048   /// Copy constructor and implicit conversion from Basic3DVector of different precision
0049   template <class U>
0050   Basic3DVector(const Basic3DVector<U>& p) : v{T(p.v[0]), T(p.v[1]), T(p.v[2]), T(p.v[3])} {}
0051 
0052   /// constructor from 2D vector (X and Y from 2D vector, z set to zero)
0053   Basic3DVector(const Basic2DVector<T>& p) : v{p.x(), p.y(), 0} {}
0054 
0055   /** Explicit constructor from other (possibly unrelated) vector classes 
0056    *  The only constraint on the argument type is that it has methods
0057    *  x(), y() and z(), and that these methods return a type convertible to T.
0058    *  Examples of use are
0059    *   <BR> construction from a Basic3DVector with different precision
0060    *   <BR> construction from a Hep3Vector
0061    *   <BR> construction from a coordinate system converter 
0062    */
0063   template <class OtherPoint>
0064   explicit Basic3DVector(const OtherPoint& p) : v{T(p.x()), T(p.y()), T(p.z())} {}
0065 
0066   // constructor from Vec4
0067   Basic3DVector(MathVector const& iv) : v(iv) {}
0068 
0069   template <class U>
0070   Basic3DVector(Vec4<U> const& iv) : v{T(iv[0]), T(iv[1]), T(iv[2]), T(iv[3])} {}
0071 
0072   /// construct from cartesian coordinates
0073   Basic3DVector(const T& x, const T& y, const T& z, const T& w = 0) : v{x, y, z, w} {}
0074 
0075   /** Deprecated construct from polar coordinates, use 
0076    *  <BR> Basic3DVector<T>( Basic3DVector<T>::Polar( theta, phi, r))
0077    *  instead. 
0078    */
0079   template <typename U>
0080   Basic3DVector(const Geom::Theta<U>& theta, const Geom::Phi<U>& phi, const T& r) {
0081     Polar p(theta.value(), phi.value(), r);
0082     v[0] = p.x();
0083     v[1] = p.y();
0084     v[2] = p.z();
0085   }
0086 
0087   MathVector const& mathVector() const { return v; }
0088   MathVector& mathVector() { return v; }
0089 
0090   T operator[](int i) const { return v[i]; }
0091   T& operator[](int i) { return v[i]; }
0092 
0093   /// Cartesian x coordinate
0094   T x() const { return v[0]; }
0095 
0096   /// Cartesian y coordinate
0097   T y() const { return v[1]; }
0098 
0099   /// Cartesian z coordinate
0100   T z() const { return v[2]; }
0101 
0102   T w() const { return v[3]; }
0103 
0104   Basic2DVector<T> xy() const { return ::xy(v); }
0105 
0106   // equality
0107   bool operator==(const Basic3DVector& rh) const {
0108     auto res = v == rh.v;
0109     return res[0] & res[1] & res[2] & res[3];
0110   }
0111 
0112   /// The vector magnitude squared. Equivalent to vec.dot(vec)
0113   T mag2() const { return ::dot(v, v); }
0114 
0115   /// The vector magnitude. Equivalent to sqrt(vec.mag2())
0116   T mag() const { return std::sqrt(mag2()); }
0117 
0118   /// Squared magnitude of transverse component
0119   T perp2() const { return ::dot2(v, v); }
0120 
0121   /// Magnitude of transverse component
0122   T perp() const { return std::sqrt(perp2()); }
0123 
0124   /// Another name for perp()
0125   T transverse() const { return perp(); }
0126 
0127   /** Azimuthal angle. The value is returned in radians, in the range (-pi,pi].
0128    *  Same precision as the system atan2(x,y) function.
0129    *  The return type is Geom::Phi<T>, see it's documentation.
0130    */
0131   T barePhi() const { return std::atan2(y(), x()); }
0132   Geom::Phi<T> phi() const { return Geom::Phi<T>(barePhi()); }
0133 
0134   /** Polar angle. The value is returned in radians, in the range [0,pi]
0135    *  Same precision as the system atan2(x,y) function.
0136    *  The return type is Geom::Phi<T>, see it's documentation.
0137    */
0138   T bareTheta() const { return std::atan2(perp(), z()); }
0139   Geom::Theta<T> theta() const { return Geom::Theta<T>(std::atan2(perp(), z())); }
0140 
0141   /** Pseudorapidity. 
0142    *  Does not check for zero transverse component; in this case the behavior 
0143    *  is as for divide-by zero, i.e. system-dependent.
0144    */
0145   // T eta() const { return -log( tan( theta()/2.));}
0146   T eta() const { return detailsBasic3DVector::eta(x(), y(), z()); }  // correct
0147 
0148   /** Unit vector parallel to this.
0149    *  If mag() is zero, a zero vector is returned.
0150    */
0151   Basic3DVector unit() const {
0152     T my_mag = mag2();
0153     return (0 != my_mag) ? (*this) * (T(1) / std::sqrt(my_mag)) : *this;
0154   }
0155 
0156   /** Operator += with a Basic3DVector of possibly different precision.
0157    */
0158   template <class U>
0159   Basic3DVector& operator+=(const Basic3DVector<U>& p) {
0160     v = v + p.v;
0161     return *this;
0162   }
0163 
0164   /** Operator -= with a Basic3DVector of possibly different precision.
0165    */
0166   template <class U>
0167   Basic3DVector& operator-=(const Basic3DVector<U>& p) {
0168     v = v - p.v;
0169     return *this;
0170   }
0171 
0172   /// Unary minus, returns a vector with components (-x(),-y(),-z())
0173   Basic3DVector operator-() const { return Basic3DVector(-v); }
0174 
0175   /// Scaling by a scalar value (multiplication)
0176   Basic3DVector& operator*=(T t) {
0177     v = t * v;
0178     return *this;
0179   }
0180 
0181   /// Scaling by a scalar value (division)
0182   Basic3DVector& operator/=(T t) {
0183     //t = T(1)/t;
0184     v = v / t;
0185     return *this;
0186   }
0187 
0188   /// Scalar product, or "dot" product, with a vector of same type.
0189   T dot(const Basic3DVector& rh) const { return ::dot(v, rh.v); }
0190 
0191   /** Scalar (or dot) product with a vector of different precision.
0192    *  The product is computed without loss of precision. The type
0193    *  of the returned scalar is the more precise of the scalar types 
0194    *  of the two vectors.
0195    */
0196   template <class U>
0197   typename PreciseFloatType<T, U>::Type dot(const Basic3DVector<U>& lh) const {
0198     return Basic3DVector<typename PreciseFloatType<T, U>::Type>(*this).dot(
0199         Basic3DVector<typename PreciseFloatType<T, U>::Type>(lh));
0200   }
0201 
0202   /// Vector product, or "cross" product, with a vector of same type.
0203   Basic3DVector cross(const Basic3DVector& lh) const { return ::cross3(v, lh.v); }
0204 
0205   /** Vector (or cross) product with a vector of different precision.
0206    *  The product is computed without loss of precision. The type
0207    *  of the returned vector is the more precise of the types 
0208    *  of the two vectors.   
0209    */
0210   template <class U>
0211   Basic3DVector<typename PreciseFloatType<T, U>::Type> cross(const Basic3DVector<U>& lh) const {
0212     return Basic3DVector<typename PreciseFloatType<T, U>::Type>(*this).cross(
0213         Basic3DVector<typename PreciseFloatType<T, U>::Type>(lh));
0214   }
0215 
0216 public:
0217   Vec4<T> v;
0218 } __attribute__((aligned(16)));
0219 
0220 namespace geometryDetails {
0221   std::ostream& print3D(std::ostream& s, double x, double y, double z);
0222 }
0223 
0224 /// simple text output to standard streams
0225 template <class T>
0226 inline std::ostream& operator<<(std::ostream& s, const Basic3DVector<T>& v) {
0227   return geometryDetails::print3D(s, v.x(), v.y(), v.z());
0228 }
0229 
0230 /// vector sum and subtraction of vectors of possibly different precision
0231 template <class T>
0232 inline Basic3DVector<T> operator+(const Basic3DVector<T>& a, const Basic3DVector<T>& b) {
0233   return a.v + b.v;
0234 }
0235 template <class T>
0236 inline Basic3DVector<T> operator-(const Basic3DVector<T>& a, const Basic3DVector<T>& b) {
0237   return a.v - b.v;
0238 }
0239 
0240 template <class T, class U>
0241 inline Basic3DVector<typename PreciseFloatType<T, U>::Type> operator+(const Basic3DVector<T>& a,
0242                                                                       const Basic3DVector<U>& b) {
0243   typedef Basic3DVector<typename PreciseFloatType<T, U>::Type> RT;
0244   return RT(a).v + RT(b).v;
0245 }
0246 
0247 template <class T, class U>
0248 inline Basic3DVector<typename PreciseFloatType<T, U>::Type> operator-(const Basic3DVector<T>& a,
0249                                                                       const Basic3DVector<U>& b) {
0250   typedef Basic3DVector<typename PreciseFloatType<T, U>::Type> RT;
0251   return RT(a).v - RT(b).v;
0252 }
0253 
0254 /// scalar product of vectors of same precision
0255 template <class T>
0256 inline T operator*(const Basic3DVector<T>& v1, const Basic3DVector<T>& v2) {
0257   return v1.dot(v2);
0258 }
0259 
0260 /// scalar product of vectors of different precision
0261 template <class T, class U>
0262 inline typename PreciseFloatType<T, U>::Type operator*(const Basic3DVector<T>& v1, const Basic3DVector<U>& v2) {
0263   return v1.dot(v2);
0264 }
0265 
0266 /** Multiplication by scalar, does not change the precision of the vector.
0267  *  The return type is the same as the type of the vector argument.
0268  */
0269 template <class T>
0270 inline Basic3DVector<T> operator*(const Basic3DVector<T>& v, T t) {
0271   return v.v * t;
0272 }
0273 
0274 /// Same as operator*( Vector, Scalar)
0275 template <class T>
0276 inline Basic3DVector<T> operator*(T t, const Basic3DVector<T>& v) {
0277   return v.v * t;
0278 }
0279 
0280 template <class T, typename S>
0281 inline Basic3DVector<T> operator*(S t, const Basic3DVector<T>& v) {
0282   return static_cast<T>(t) * v;
0283 }
0284 
0285 template <class T, typename S>
0286 inline Basic3DVector<T> operator*(const Basic3DVector<T>& v, S t) {
0287   return static_cast<T>(t) * v;
0288 }
0289 
0290 /** Division by scalar, does not change the precision of the vector.
0291  *  The return type is the same as the type of the vector argument.
0292  */
0293 template <class T>
0294 inline Basic3DVector<T> operator/(const Basic3DVector<T>& v, T t) {
0295   return v.v / t;
0296 }
0297 
0298 template <class T, typename S>
0299 inline Basic3DVector<T> operator/(const Basic3DVector<T>& v, S s) {
0300   //  T t = S(1)/s; return v*t;
0301   T t = s;
0302   return v / t;
0303 }
0304 
0305 typedef Basic3DVector<float> Basic3DVectorF;
0306 typedef Basic3DVector<double> Basic3DVectorD;
0307 
0308 //  add long double specialization
0309 #include "Basic3DVectorLD.h"
0310 
0311 #endif  // GeometryVector_Basic3DVector_h