Back to home page

Project CMSSW displayed by LXR

 
 

    


File indexing completed on 2023-10-25 09:39:05

0001 #ifndef GeometryVector_newBasic3DVector_h
0002 #define GeometryVector_newBasic3DVector_h
0003 
0004 #include "DataFormats/GeometryVector/interface/Basic2DVector.h"
0005 #include "DataFormats/GeometryVector/interface/Theta.h"
0006 #include "DataFormats/GeometryVector/interface/Phi.h"
0007 #include "DataFormats/GeometryVector/interface/PreciseFloatType.h"
0008 #include "DataFormats/GeometryVector/interface/CoordinateSets.h"
0009 #include "DataFormats/Math/interface/SSEVec.h"
0010 #include <iosfwd>
0011 #include <cmath>
0012 
0013 namespace detailsBasic3DVector {
0014   inline float __attribute__((always_inline)) __attribute__((pure)) eta(float x, float y, float z) {
0015     float t(z / std::sqrt(x * x + y * y));
0016     return ::asinhf(t);
0017   }
0018   inline double __attribute__((always_inline)) __attribute__((pure)) eta(double x, double y, double z) {
0019     double t(z / std::sqrt(x * x + y * y));
0020     return ::asinh(t);
0021   }
0022   inline long double __attribute__((always_inline)) __attribute__((pure))
0023   eta(long double x, long double y, long double z) {
0024     long double t(z / std::sqrt(x * x + y * y));
0025     return ::asinhl(t);
0026   }
0027 }  // namespace detailsBasic3DVector
0028 
0029 template <typename T>
0030 class Basic3DVector {
0031 public:
0032   typedef T ScalarType;
0033   typedef mathSSE::Vec4<T> VectorType;
0034   typedef mathSSE::Vec4<T> MathVector;
0035   typedef Geom::Cylindrical2Cartesian<T> Cylindrical;
0036   typedef Geom::Spherical2Cartesian<T> Spherical;
0037   typedef Spherical Polar;  // synonym
0038 
0039   /** default constructor uses default constructor of T to initialize the 
0040    *  components. For built-in floating-point types this means initialization 
0041    * to zero??? (force init to 0)
0042    */
0043   Basic3DVector() {}
0044 
0045   /// Copy constructor from same type. Should not be needed but for gcc bug 12685
0046   Basic3DVector(const Basic3DVector& p) : v(p.v) {}
0047 
0048   /// Copy constructor and implicit conversion from Basic3DVector of different precision
0049   template <class U>
0050   Basic3DVector(const Basic3DVector<U>& p) : v(p.v) {}
0051 
0052   /// constructor from 2D vector (X and Y from 2D vector, z set to zero)
0053   Basic3DVector(const Basic2DVector<T>& p) : v(p.x(), p.y(), 0) {}
0054 
0055   /** Explicit constructor from other (possibly unrelated) vector classes 
0056    *  The only constraint on the argument type is that it has methods
0057    *  x(), y() and z(), and that these methods return a type convertible to T.
0058    *  Examples of use are
0059    *   <BR> construction from a Basic3DVector with different precision
0060    *   <BR> construction from a Hep3Vector
0061    *   <BR> construction from a coordinate system converter 
0062    */
0063   template <class OtherPoint>
0064   explicit Basic3DVector(const OtherPoint& p) : v(p.x(), p.y(), p.z()) {}
0065 
0066   // constructor from Vec4
0067   template <class U>
0068   Basic3DVector(mathSSE::Vec4<U> const& iv) : v(iv) {}
0069 
0070   /// construct from cartesian coordinates
0071   Basic3DVector(const T& x, const T& y, const T& z, const T& w = 0) : v(x, y, z, w) {}
0072 
0073   /** Deprecated construct from polar coordinates, use 
0074    *  <BR> Basic3DVector<T>( Basic3DVector<T>::Polar( theta, phi, r))
0075    *  instead. 
0076    */
0077   template <typename U>
0078   Basic3DVector(const Geom::Theta<U>& theta, const Geom::Phi<U>& phi, const T& r) {
0079     Polar p(theta.value(), phi.value(), r);
0080     v.o.theX = p.x();
0081     v.o.theY = p.y();
0082     v.o.theZ = p.z();
0083   }
0084 
0085   MathVector const& mathVector() const { return v; }
0086   MathVector& mathVector() { return v; }
0087 
0088   T operator[](int i) const { return v[i]; }
0089   T& operator[](int i) { return v[i]; }
0090 
0091   /// Cartesian x coordinate
0092   T x() const { return v.o.theX; }
0093 
0094   /// Cartesian y coordinate
0095   T y() const { return v.o.theY; }
0096 
0097   /// Cartesian z coordinate
0098   T z() const { return v.o.theZ; }
0099 
0100   T w() const { return v.o.theW; }
0101 
0102   Basic2DVector<T> xy() const { return v.xy(); }
0103 
0104   // equality
0105   bool operator==(const Basic3DVector& rh) const { return v == rh.v; }
0106 
0107   /// The vector magnitude squared. Equivalent to vec.dot(vec)
0108   T mag2() const { return ::dot(v, v); }
0109 
0110   /// The vector magnitude. Equivalent to sqrt(vec.mag2())
0111   T mag() const { return std::sqrt(mag2()); }
0112 
0113   /// Squared magnitude of transverse component
0114   T perp2() const { return ::dotxy(v, v); }
0115 
0116   /// Magnitude of transverse component
0117   T perp() const { return std::sqrt(perp2()); }
0118 
0119   /// Another name for perp()
0120   T transverse() const { return perp(); }
0121 
0122   /** Azimuthal angle. The value is returned in radians, in the range (-pi,pi].
0123    *  Same precision as the system atan2(x,y) function.
0124    *  The return type is Geom::Phi<T>, see it's documentation.
0125    */
0126   T barePhi() const { return std::atan2(y(), x()); }
0127   Geom::Phi<T> phi() const { return Geom::Phi<T>(barePhi()); }
0128 
0129   /** Polar angle. The value is returned in radians, in the range [0,pi]
0130    *  Same precision as the system atan2(x,y) function.
0131    *  The return type is Geom::Phi<T>, see it's documentation.
0132    */
0133   T bareTheta() const { return std::atan2(perp(), z()); }
0134   Geom::Theta<T> theta() const { return Geom::Theta<T>(std::atan2(perp(), z())); }
0135 
0136   /** Pseudorapidity. 
0137    *  Does not check for zero transverse component; in this case the behavior 
0138    *  is as for divide-by zero, i.e. system-dependent.
0139    */
0140   // T eta() const { return -log( tan( theta()/2.));}
0141   T eta() const { return detailsBasic3DVector::eta(x(), y(), z()); }  // correct
0142 
0143   /** Unit vector parallel to this.
0144    *  If mag() is zero, a zero vector is returned.
0145    */
0146   Basic3DVector unit() const {
0147     T my_mag = mag2();
0148     return (0 != my_mag) ? (*this) * (T(1) / std::sqrt(my_mag)) : *this;
0149   }
0150 
0151   /** Operator += with a Basic3DVector of possibly different precision.
0152    */
0153   template <class U>
0154   Basic3DVector& operator+=(const Basic3DVector<U>& p) {
0155     v = v + p.v;
0156     return *this;
0157   }
0158 
0159   /** Operator -= with a Basic3DVector of possibly different precision.
0160    */
0161   template <class U>
0162   Basic3DVector& operator-=(const Basic3DVector<U>& p) {
0163     v = v - p.v;
0164     return *this;
0165   }
0166 
0167   /// Unary minus, returns a vector with components (-x(),-y(),-z())
0168   Basic3DVector operator-() const { return Basic3DVector(-v); }
0169 
0170   /// Scaling by a scalar value (multiplication)
0171   Basic3DVector& operator*=(T t) {
0172     v = t * v;
0173     return *this;
0174   }
0175 
0176   /// Scaling by a scalar value (division)
0177   Basic3DVector& operator/=(T t) {
0178     //t = T(1)/t;
0179     v = v / t;
0180     return *this;
0181   }
0182 
0183   /// Scalar product, or "dot" product, with a vector of same type.
0184   T dot(const Basic3DVector& rh) const { return ::dot(v, rh.v); }
0185 
0186   /** Scalar (or dot) product with a vector of different precision.
0187    *  The product is computed without loss of precision. The type
0188    *  of the returned scalar is the more precise of the scalar types 
0189    *  of the two vectors.
0190    */
0191   template <class U>
0192   typename PreciseFloatType<T, U>::Type dot(const Basic3DVector<U>& lh) const {
0193     return Basic3DVector<typename PreciseFloatType<T, U>::Type>(*this).dot(
0194         Basic3DVector<typename PreciseFloatType<T, U>::Type>(lh));
0195   }
0196 
0197   /// Vector product, or "cross" product, with a vector of same type.
0198   Basic3DVector cross(const Basic3DVector& lh) const { return ::cross(v, lh.v); }
0199 
0200   /** Vector (or cross) product with a vector of different precision.
0201    *  The product is computed without loss of precision. The type
0202    *  of the returned vector is the more precise of the types 
0203    *  of the two vectors.   
0204    */
0205   template <class U>
0206   Basic3DVector<typename PreciseFloatType<T, U>::Type> cross(const Basic3DVector<U>& lh) const {
0207     return Basic3DVector<typename PreciseFloatType<T, U>::Type>(*this).cross(
0208         Basic3DVector<typename PreciseFloatType<T, U>::Type>(lh));
0209   }
0210 
0211 public:
0212   mathSSE::Vec4<T> v;
0213 } __attribute__((aligned(16)));
0214 
0215 namespace geometryDetails {
0216   std::ostream& print3D(std::ostream& s, double x, double y, double z);
0217 }
0218 
0219 /// simple text output to standard streams
0220 template <class T>
0221 inline std::ostream& operator<<(std::ostream& s, const Basic3DVector<T>& v) {
0222   return geometryDetails::print3D(s, v.x(), v.y(), v.z());
0223 }
0224 
0225 /// vector sum and subtraction of vectors of possibly different precision
0226 template <class T>
0227 inline Basic3DVector<T> operator+(const Basic3DVector<T>& a, const Basic3DVector<T>& b) {
0228   return a.v + b.v;
0229 }
0230 template <class T>
0231 inline Basic3DVector<T> operator-(const Basic3DVector<T>& a, const Basic3DVector<T>& b) {
0232   return a.v - b.v;
0233 }
0234 
0235 template <class T, class U>
0236 inline Basic3DVector<typename PreciseFloatType<T, U>::Type> operator+(const Basic3DVector<T>& a,
0237                                                                       const Basic3DVector<U>& b) {
0238   typedef Basic3DVector<typename PreciseFloatType<T, U>::Type> RT;
0239   return RT(a).v + RT(b).v;
0240 }
0241 
0242 template <class T, class U>
0243 inline Basic3DVector<typename PreciseFloatType<T, U>::Type> operator-(const Basic3DVector<T>& a,
0244                                                                       const Basic3DVector<U>& b) {
0245   typedef Basic3DVector<typename PreciseFloatType<T, U>::Type> RT;
0246   return RT(a).v - RT(b).v;
0247 }
0248 
0249 /// scalar product of vectors of same precision
0250 template <class T>
0251 inline T operator*(const Basic3DVector<T>& v1, const Basic3DVector<T>& v2) {
0252   return v1.dot(v2);
0253 }
0254 
0255 /// scalar product of vectors of different precision
0256 template <class T, class U>
0257 inline typename PreciseFloatType<T, U>::Type operator*(const Basic3DVector<T>& v1, const Basic3DVector<U>& v2) {
0258   return v1.dot(v2);
0259 }
0260 
0261 /** Multiplication by scalar, does not change the precision of the vector.
0262  *  The return type is the same as the type of the vector argument.
0263  */
0264 template <class T>
0265 inline Basic3DVector<T> operator*(const Basic3DVector<T>& v, T t) {
0266   return v.v * t;
0267 }
0268 
0269 /// Same as operator*( Vector, Scalar)
0270 template <class T>
0271 inline Basic3DVector<T> operator*(T t, const Basic3DVector<T>& v) {
0272   return v.v * t;
0273 }
0274 
0275 template <class T, typename S>
0276 inline Basic3DVector<T> operator*(S t, const Basic3DVector<T>& v) {
0277   return static_cast<T>(t) * v;
0278 }
0279 
0280 template <class T, typename S>
0281 inline Basic3DVector<T> operator*(const Basic3DVector<T>& v, S t) {
0282   return static_cast<T>(t) * v;
0283 }
0284 
0285 /** Division by scalar, does not change the precision of the vector.
0286  *  The return type is the same as the type of the vector argument.
0287  */
0288 template <class T>
0289 inline Basic3DVector<T> operator/(const Basic3DVector<T>& v, T t) {
0290   return v.v / t;
0291 }
0292 
0293 template <class T, typename S>
0294 inline Basic3DVector<T> operator/(const Basic3DVector<T>& v, S s) {
0295   //  T t = S(1)/s; return v*t;
0296   T t = s;
0297   return v / t;
0298 }
0299 
0300 typedef Basic3DVector<float> Basic3DVectorF;
0301 typedef Basic3DVector<double> Basic3DVectorD;
0302 
0303 //  add long double specialization
0304 #include "Basic3DVectorLD.h"
0305 
0306 #endif  // GeometryVector_Basic3DVector_h