Back to home page

Project CMSSW displayed by LXR

 
 

    


File indexing completed on 2021-02-14 12:54:01

0001 #ifndef DataFormatsMathAPPROX_EXP_H
0002 #define DataFormatsMathAPPROX_EXP_H
0003 /*  Quick and not that dirty vectorizable exp implementations
0004     Author: Florent de Dinechin, Aric, ENS-Lyon 
0005     with advice from Vincenzo Innocente, CERN
0006     All right reserved
0007 
0008 Warning + disclaimers:
0009  
0010 Feel free to distribute or insert in other programs etc, as long as this notice is attached.
0011     Comments, requests etc: Florent.de.Dinechin@ens-lyon.fr
0012 
0013 Polynomials were obtained using Sollya scripts (in comments): 
0014 please also keep these comments attached to the code. 
0015 
0016 If a derivative of this code ends up in the glibc I am too happy: the version with MANAGE_SUBNORMALS=1 and DEGREE=6 is faithful-accurate over the full 2^32 binary32 numbers and behaves well WRT exceptional cases. It is about 4 times faster than the stock expf on this PC, when compiled with gcc -O2.
0017 
0018 This code is FMA-safe (i.e. accelerated and more accurate with an FMA) as long as my parentheses are respected. 
0019 
0020 A remaining TODO is to try and manage the over/underflow using only integer tests as per Astasiev et al, RNC conf.
0021 Not sure it makes that much sense in the vector context.
0022 
0023 */
0024 
0025 // #define MANAGE_SUBNORMALS 1 // No measurable perf difference, so let's be clean.
0026 // If set to zero we flush to zero the subnormal outputs, ie for x<-88 or so
0027 
0028 // DEGREE
0029 // 6 is perfect.
0030 // 5 provides max 2-ulp error,
0031 // 4 loses 44 ulps (6 bits) for an acceleration of 10% WRT 6
0032 // (I don't subtract the loop and call overhead, so it would be more for constexprd code)
0033 
0034 // see the comments in the code for the accuracy you get from a given degree
0035 
0036 #include "DataFormats/Math/interface/approx_math.h"
0037 
0038 template <int DEGREE>
0039 constexpr float approx_expf_P(float p);
0040 
0041 // degree =  2   => absolute accuracy is  8 bits
0042 template <>
0043 constexpr float approx_expf_P<2>(float y) {
0044   return float(0x2.p0) + y * (float(0x2.07b99p0) + y * float(0x1.025b84p0));
0045 }
0046 // degree =  3   => absolute accuracy is  12 bits
0047 template <>
0048 constexpr float approx_expf_P<3>(float y) {
0049 #ifdef HORNER  // HORNER
0050   return float(0x2.p0) + y * (float(0x1.fff798p0) + y * (float(0x1.02249p0) + y * float(0x5.62042p-4)));
0051 #else  // ESTRIN
0052   float p23 = (float(0x1.02249p0) + y * float(0x5.62042p-4));
0053   float p01 = float(0x2.p0) + y * float(0x1.fff798p0);
0054   return p01 + y * y * p23;
0055 #endif
0056 }
0057 // degree =  4   => absolute accuracy is  17 bits
0058 template <>
0059 constexpr float approx_expf_P<4>(float y) {
0060   return float(0x2.p0) +
0061          y * (float(0x1.fffb1p0) + y * (float(0xf.ffe84p-4) + y * (float(0x5.5f9c1p-4) + y * float(0x1.57755p-4))));
0062 }
0063 // degree =  5   => absolute accuracy is  22 bits
0064 template <>
0065 constexpr float approx_expf_P<5>(float y) {
0066   return float(0x2.p0) +
0067          y * (float(0x2.p0) + y * (float(0xf.ffed8p-4) +
0068                                    y * (float(0x5.5551cp-4) + y * (float(0x1.5740d8p-4) + y * float(0x4.49368p-8)))));
0069 }
0070 // degree =  6   => absolute accuracy is  27 bits
0071 template <>
0072 constexpr float approx_expf_P<6>(float y) {
0073 #ifdef HORNER  // HORNER
0074   float p =
0075       float(0x2.p0) +
0076       y * (float(0x2.p0) +
0077            y * (float(0x1.p0) + y * (float(0x5.55523p-4) + y * (float(0x1.5554dcp-4) +
0078                                                                 y * (float(0x4.48f41p-8) + y * float(0xb.6ad4p-12))))));
0079 #else  // ESTRIN does seem to save a cycle or two
0080   float p56 = float(0x4.48f41p-8) + y * float(0xb.6ad4p-12);
0081   float p34 = float(0x5.55523p-4) + y * float(0x1.5554dcp-4);
0082   float y2 = y * y;
0083   float p12 = float(0x2.p0) + y;  // By chance we save one operation here! Funny.
0084   float p36 = p34 + y2 * p56;
0085   float p16 = p12 + y2 * p36;
0086   float p = float(0x2.p0) + y * p16;
0087 #endif
0088   return p;
0089 }
0090 
0091 // degree =  7   => absolute accuracy is  31 bits
0092 template <>
0093 constexpr float approx_expf_P<7>(float y) {
0094   return float(0x2.p0) +
0095          y * (float(0x2.p0) +
0096               y * (float(0x1.p0) +
0097                    y * (float(0x5.55555p-4) +
0098                         y * (float(0x1.5554e4p-4) +
0099                              y * (float(0x4.444adp-8) + y * (float(0xb.6a8a6p-12) + y * float(0x1.9ec814p-12)))))));
0100 }
0101 
0102 /* The Sollya script that computes the polynomials above
0103 
0104 
0105 f= 2*exp(y);
0106 I=[-log(2)/2;log(2)/2];
0107 filename="/tmp/polynomials";
0108 print("") > filename;
0109 for deg from 2 to 8 do begin
0110   p = fpminimax(f, deg,[|1,23...|],I, floating, absolute); 
0111   display=decimal;
0112   acc=floor(-log2(sup(supnorm(p, f, I, absolute, 2^(-40)))));
0113   print( "   // degree = ", deg, 
0114          "  => absolute accuracy is ",  acc, "bits" ) >> filename;
0115   print("#if ( DEGREE ==", deg, ")") >> filename;
0116   display=hexadecimal;
0117   print("   float p = ", horner(p) , ";") >> filename;
0118   print("#endif") >> filename;
0119 end;
0120 
0121 */
0122 
0123 // valid for -87.3365 < x < 88.7228
0124 template <int DEGREE>
0125 constexpr float unsafe_expf_impl(float x) {
0126   using namespace approx_math;
0127   /* Sollya for the following constants:
0128      display=hexadecimal;
0129      1b23+1b22;
0130      single(1/log(2));
0131      log2H=round(log(2), 16, RN);
0132      log2L = single(log(2)-log2H);
0133      log2H; log2L;
0134      
0135   */
0136   // constexpr float rnd_cst = float(0xc.p20);
0137   constexpr float inv_log2f = float(0x1.715476p0);
0138   constexpr float log2H = float(0xb.172p-4);
0139   constexpr float log2L = float(0x1.7f7d1cp-20);
0140 
0141   float y = x;
0142   // This is doing round(x*inv_log2f) to the nearest integer
0143   float z = fpfloor((x * inv_log2f) + 0.5f);
0144   // Cody-and-Waite accurate range reduction. FMA-safe.
0145   y -= z * log2H;
0146   y -= z * log2L;
0147   // exponent
0148   int32_t e = z;
0149 
0150   // we want RN above because it centers the interval around zero
0151   // but then we could have 2^e = below being infinity when it shouldn't
0152   // (when e=128 but p<1)
0153   // so we avoid this case by reducing e and evaluating a polynomial for 2*exp
0154   e -= 1;
0155 
0156   // NaN inputs will propagate to the output as expected
0157 
0158   float p = approx_expf_P<DEGREE>(y);
0159 
0160   // cout << "x=" << x << "  e=" << e << "  y=" << y << "  p=" << p <<"\n";
0161   binary32 ef;
0162   uint32_t biased_exponent = e + 127;
0163   ef.ui32 = (biased_exponent << 23);
0164 
0165   return p * ef.f;
0166 }
0167 
0168 #ifndef NO_APPROX_MATH
0169 
0170 template <int DEGREE>
0171 constexpr float unsafe_expf(float x) {
0172   return unsafe_expf_impl<DEGREE>(x);
0173 }
0174 
0175 template <int DEGREE>
0176 constexpr float approx_expf(float x) {
0177   constexpr float inf_threshold = float(0x5.8b90cp4);
0178   // log of the smallest normal
0179   constexpr float zero_threshold_ftz = -float(0x5.75628p4);  // sollya: single(log(1b-126));
0180   // flush to zero on the output
0181   // manage infty output:
0182   // faster than directly on output!
0183   x = std::min(std::max(x, zero_threshold_ftz), inf_threshold);
0184   float r = unsafe_expf<DEGREE>(x);
0185 
0186   return r;
0187 }
0188 
0189 #else
0190 template <int DEGREE>
0191 constexpr float unsafe_expf(float x) {
0192   return std::exp(x);
0193 }
0194 template <int DEGREE>
0195 constexpr float approx_expf(float x) {
0196   return std::exp(x);
0197 }
0198 #endif  // NO_APPROX_MATH
0199 
0200 #endif