File indexing completed on 2025-03-23 16:00:23
0001 #include "PhysicsTools/ONNXRuntime/interface/ONNXRuntime.h"
0002 #include "RecoHGCal/TICL/interface/TracksterInferenceByDNN.h"
0003 #include "RecoHGCal/TICL/interface/TracksterInferenceAlgoFactory.h"
0004 #include "FWCore/ParameterSet/interface/ParameterSet.h"
0005 #include "FWCore/Framework/interface/MakerMacros.h"
0006 #include "RecoHGCal/TICL/interface/PatternRecognitionAlgoBase.h"
0007 #include "RecoLocalCalo/HGCalRecAlgos/interface/RecHitTools.h"
0008 #include "TrackstersPCA.h"
0009
0010 namespace ticl {
0011 using namespace cms::Ort;
0012
0013
0014 TracksterInferenceByDNN::TracksterInferenceByDNN(const edm::ParameterSet& conf)
0015 : TracksterInferenceAlgoBase(conf),
0016 onnxPIDRuntimeInstance_(std::make_unique<cms::Ort::ONNXRuntime>(
0017 conf.getParameter<edm::FileInPath>("onnxPIDModelPath").fullPath().c_str())),
0018 onnxEnergyRuntimeInstance_(std::make_unique<cms::Ort::ONNXRuntime>(
0019 conf.getParameter<edm::FileInPath>("onnxEnergyModelPath").fullPath().c_str())),
0020 inputNames_(conf.getParameter<std::vector<std::string>>("inputNames")),
0021 output_en_(conf.getParameter<std::vector<std::string>>("output_en")),
0022 output_id_(conf.getParameter<std::vector<std::string>>("output_id")),
0023 eidMinClusterEnergy_(conf.getParameter<double>("eid_min_cluster_energy")),
0024 eidNLayers_(conf.getParameter<int>("eid_n_layers")),
0025 eidNClusters_(conf.getParameter<int>("eid_n_clusters")),
0026 doPID_(conf.getParameter<int>("doPID")),
0027 doRegression_(conf.getParameter<int>("doRegression"))
0028 {
0029
0030 onnxPIDSession_ = onnxPIDRuntimeInstance_.get();
0031 onnxEnergySession_ = onnxEnergyRuntimeInstance_.get();
0032 }
0033
0034
0035 void TracksterInferenceByDNN::inputData(const std::vector<reco::CaloCluster>& layerClusters,
0036 std::vector<Trackster>& tracksters) {
0037 tracksterIndices_.clear();
0038 for (int i = 0; i < static_cast<int>(tracksters.size()); i++) {
0039 float sumClusterEnergy = 0.;
0040 for (const unsigned int& vertex : tracksters[i].vertices()) {
0041 sumClusterEnergy += static_cast<float>(layerClusters[vertex].energy());
0042 if (sumClusterEnergy >= eidMinClusterEnergy_) {
0043 tracksters[i].setRegressedEnergy(0.f);
0044 tracksters[i].zeroProbabilities();
0045 tracksterIndices_.push_back(i);
0046 break;
0047 }
0048 }
0049 }
0050
0051
0052 batchSize_ = static_cast<int>(tracksterIndices_.size());
0053 if (batchSize_ == 0)
0054 return;
0055
0056 std::vector<int64_t> inputShape = {batchSize_, eidNLayers_, eidNClusters_, eidNFeatures_};
0057 input_shapes_ = {inputShape};
0058
0059 input_Data_.clear();
0060 input_Data_.emplace_back(batchSize_ * eidNLayers_ * eidNClusters_ * eidNFeatures_, 0);
0061
0062 for (int i = 0; i < batchSize_; i++) {
0063 const Trackster& trackster = tracksters[tracksterIndices_[i]];
0064
0065
0066 std::vector<int> clusterIndices(trackster.vertices().size());
0067 for (int k = 0; k < static_cast<int>(trackster.vertices().size()); k++) {
0068 clusterIndices[k] = k;
0069 }
0070
0071 std::sort(clusterIndices.begin(), clusterIndices.end(), [&layerClusters, &trackster](const int& a, const int& b) {
0072 return layerClusters[trackster.vertices(a)].energy() > layerClusters[trackster.vertices(b)].energy();
0073 });
0074
0075 std::vector<int> seenClusters(eidNLayers_, 0);
0076
0077
0078 for (const int& k : clusterIndices) {
0079 const reco::CaloCluster& cluster = layerClusters[trackster.vertices(k)];
0080 int j = rhtools_.getLayerWithOffset(cluster.hitsAndFractions()[0].first) - 1;
0081 if (j < eidNLayers_ && seenClusters[j] < eidNClusters_) {
0082 auto index = (i * eidNLayers_ + j) * eidNFeatures_ * eidNClusters_ + seenClusters[j] * eidNFeatures_;
0083 input_Data_[0][index] =
0084 static_cast<float>(cluster.energy() / static_cast<float>(trackster.vertex_multiplicity(k)));
0085 input_Data_[0][index + 1] = static_cast<float>(std::abs(cluster.eta()));
0086 input_Data_[0][index + 2] = static_cast<float>(cluster.phi());
0087 seenClusters[j]++;
0088 }
0089 }
0090 }
0091 }
0092
0093
0094 void TracksterInferenceByDNN::runInference(std::vector<Trackster>& tracksters) {
0095 if (batchSize_ == 0)
0096 return;
0097
0098 if (doPID_ and doRegression_) {
0099
0100 auto result = onnxEnergySession_->run(inputNames_, input_Data_, input_shapes_, output_en_, batchSize_);
0101 auto& energyOutputTensor = result[0];
0102 if (!output_en_.empty()) {
0103 for (int i = 0; i < static_cast<int>(batchSize_); i++) {
0104 const float energy = energyOutputTensor[i];
0105 tracksters[tracksterIndices_[i]].setRegressedEnergy(energy);
0106 }
0107 }
0108 }
0109
0110 if (doPID_) {
0111
0112 auto pidOutput = onnxPIDSession_->run(inputNames_, input_Data_, input_shapes_, output_id_, batchSize_);
0113 auto pidOutputTensor = pidOutput[0];
0114 float* probs = pidOutputTensor.data();
0115 if (!output_id_.empty()) {
0116 for (int i = 0; i < batchSize_; i++) {
0117 tracksters[tracksterIndices_[i]].setProbabilities(probs);
0118 probs += tracksters[tracksterIndices_[i]].id_probabilities().size();
0119 }
0120 }
0121 }
0122 }
0123
0124 void TracksterInferenceByDNN::fillPSetDescription(edm::ParameterSetDescription& iDesc) {
0125 iDesc.add<int>("algo_verbosity", 0);
0126 iDesc
0127 .add<edm::FileInPath>(
0128 "onnxPIDModelPath",
0129 edm::FileInPath("RecoHGCal/TICL/data/ticlv5/onnx_models/DNN/patternrecognition/id_v0.onnx"))
0130 ->setComment("Path to ONNX PID model CLU3D");
0131 iDesc
0132 .add<edm::FileInPath>(
0133 "onnxEnergyModelPath",
0134 edm::FileInPath("RecoHGCal/TICL/data/ticlv5/onnx_models/DNN/patternrecognition/energy_v0.onnx"))
0135 ->setComment("Path to ONNX Energy model CLU3D");
0136 iDesc.add<std::vector<std::string>>("inputNames", {"input"});
0137 iDesc.add<std::vector<std::string>>("output_en", {"enreg_output"});
0138 iDesc.add<std::vector<std::string>>("output_id", {"pid_output"});
0139 iDesc.add<double>("eid_min_cluster_energy", 1.0);
0140 iDesc.add<int>("eid_n_layers", 50);
0141 iDesc.add<int>("eid_n_clusters", 10);
0142 iDesc.add<int>("doPID", 1);
0143 iDesc.add<int>("doRegression", 1);
0144 }
0145 }