Back to home page

Project CMSSW displayed by LXR

 
 

    


File indexing completed on 2021-02-14 14:24:39

0001 import FWCore.ParameterSet.Config as cms
0002 
0003 # The following algorithms looks how far a rechit is from the
0004 # proto segment in terms of its error ellipse.  This is different
0005 # from the other algorithms which use a cylinder around the proto
0006 # segment and look for rechits within that cylinder
0007 ST_ME1234 = cms.PSet(
0008 
0009     #Parameters for showering segments
0010     useShowering = cms.bool(False),
0011     maxRatioResidualPrune = cms.double(3),
0012     dRPhiFineMax = cms.double(8.0),
0013     dPhiFineMax = cms.double(0.025),
0014     tanThetaMax = cms.double(1.2),
0015     tanPhiMax = cms.double(0.5),
0016     maxDPhi = cms.double(999.),
0017     maxDTheta = cms.double(999.),
0018 
0019 
0020     curvePenaltyThreshold = cms.double(0.85),
0021     minHitsPerSegment = cms.int32(3),
0022     yweightPenaltyThreshold = cms.double(1.0),
0023     curvePenalty = cms.double(2.0),
0024     dXclusBoxMax = cms.double(4.0),
0025     BrutePruning = cms.bool(True),
0026     BPMinImprovement = cms.double(10000.),
0027     yweightPenalty = cms.double(1.5),
0028     hitDropLimit5Hits = cms.double(0.8),
0029     preClustering = cms.bool(True),
0030     preClusteringUseChaining = cms.bool(True),
0031     hitDropLimit4Hits = cms.double(0.6),
0032     hitDropLimit6Hits = cms.double(0.3333),
0033     maxRecHitsInCluster = cms.int32(20),
0034     CSCDebug = cms.untracked.bool(False),
0035     onlyBestSegment = cms.bool(False),
0036     Pruning = cms.bool(True),
0037     dYclusBoxMax = cms.double(8.0),
0038     # Correction to improove fit
0039     CorrectTheErrors = cms.bool(True),
0040     NormChi2Cut2D = cms.double(20.0),
0041     NormChi2Cut3D = cms.double(10.0),
0042     prePrun = cms.bool(True),
0043     prePrunLimit = cms.double(3.17),
0044     SeedSmall = cms.double(0.000200),
0045     SeedBig = cms.double(0.001500),
0046     ForceCovariance = cms.bool(False),
0047     ForceCovarianceAll = cms.bool(False),
0048     Covariance = cms.double(0.0)
0049 
0050 )
0051 ST_ME1A = cms.PSet(
0052 
0053     #Parameters for showering segments
0054     useShowering = cms.bool(False),
0055     maxRatioResidualPrune = cms.double(3),
0056     dRPhiFineMax = cms.double(8.0),
0057     dPhiFineMax = cms.double(0.025),
0058     tanThetaMax = cms.double(1.2),
0059     tanPhiMax = cms.double(0.5),
0060     maxDPhi = cms.double(999.),
0061     maxDTheta = cms.double(999.),
0062 
0063 
0064     curvePenaltyThreshold = cms.double(0.85),
0065     minHitsPerSegment = cms.int32(3),
0066     yweightPenaltyThreshold = cms.double(1.0),
0067     curvePenalty = cms.double(2.0),
0068     dXclusBoxMax = cms.double(4.0),
0069     BrutePruning = cms.bool(True),
0070     BPMinImprovement = cms.double(10000.),
0071     yweightPenalty = cms.double(1.5),
0072     hitDropLimit5Hits = cms.double(0.8),
0073     preClustering = cms.bool(True),
0074     preClusteringUseChaining = cms.bool(True),
0075     hitDropLimit4Hits = cms.double(0.6),
0076     hitDropLimit6Hits = cms.double(0.3333),
0077     maxRecHitsInCluster = cms.int32(24),
0078     CSCDebug = cms.untracked.bool(False),
0079     onlyBestSegment = cms.bool(False),
0080     Pruning = cms.bool(True),
0081     dYclusBoxMax = cms.double(8.0),
0082     # Correction to improove fit
0083     CorrectTheErrors = cms.bool(True),
0084     NormChi2Cut2D = cms.double(20.0), 
0085     NormChi2Cut3D = cms.double(10.0), 
0086     prePrun = cms.bool(True),
0087     prePrunLimit = cms.double(3.17),
0088     SeedSmall = cms.double(0.000200),
0089     SeedBig = cms.double(0.001500),
0090     ForceCovariance = cms.bool(False),
0091     ForceCovarianceAll = cms.bool(False),
0092     Covariance = cms.double(0.0)
0093 
0094 )
0095 CSCSegAlgoST = cms.PSet(
0096     algo_name = cms.string('CSCSegAlgoST'),
0097     algo_psets = cms.VPSet( cms.PSet(ST_ME1234), cms.PSet(ST_ME1A) ),
0098     chamber_types = cms.vstring('ME1/a','ME1/b','ME1/2','ME1/3','ME2/1','ME2/2','ME3/1','ME3/2','ME4/1','ME4/2'),
0099     parameters_per_chamber_type = cms.vint32(2, 1, 1, 1, 1, 1, 1, 1, 1, 1)
0100 )
0101