Back to home page

Project CMSSW displayed by LXR

 
 

    


Warning, /RecoTracker/MkFitCore/src/upParam_MultKalmanGain.ah is written in an unsupported language. File is not indexed.

0001 #ifdef MPLEX_INTRINSICS
0002 
0003    for (int n = 0; n < N; n += MPLEX_INTRINSICS_WIDTH_BYTES / sizeof(T))
0004    {
0005       IntrVec_t a_0 = LD(a, 0);
0006       IntrVec_t b_0 = LD(b, 0);
0007       IntrVec_t c_0 = MUL(a_0, b_0);
0008       IntrVec_t b_1 = LD(b, 1);
0009       IntrVec_t c_1 = MUL(a_0, b_1);
0010       IntrVec_t b_3 = LD(b, 3);
0011       IntrVec_t c_2 = MUL(a_0, b_3);
0012 
0013       IntrVec_t a_1 = LD(a, 1);
0014       c_0 = FMA(a_1, b_1, c_0);
0015       IntrVec_t b_2 = LD(b, 2);
0016       c_1 = FMA(a_1, b_2, c_1);
0017       IntrVec_t b_4 = LD(b, 4);
0018       c_2 = FMA(a_1, b_4, c_2);
0019 
0020       IntrVec_t a_3 = LD(a, 3);
0021       c_0 = FMA(a_3, b_3, c_0);
0022       c_1 = FMA(a_3, b_4, c_1);
0023       IntrVec_t b_5 = LD(b, 5);
0024       c_2 = FMA(a_3, b_5, c_2);
0025 
0026       IntrVec_t c_3 = MUL(a_1, b_0);
0027       ST(c, 0, c_0);
0028       ST(c, 1, c_1);
0029       IntrVec_t c_4 = MUL(a_1, b_1);
0030       ST(c, 2, c_2);
0031       IntrVec_t c_5 = MUL(a_1, b_3);
0032 
0033       IntrVec_t a_2 = LD(a, 2);
0034       c_3 = FMA(a_2, b_1, c_3);
0035       c_4 = FMA(a_2, b_2, c_4);
0036       c_5 = FMA(a_2, b_4, c_5);
0037 
0038       IntrVec_t a_4 = LD(a, 4);
0039       c_3 = FMA(a_4, b_3, c_3);
0040       c_4 = FMA(a_4, b_4, c_4);
0041       c_5 = FMA(a_4, b_5, c_5);
0042 
0043       IntrVec_t c_6 = MUL(a_3, b_0);
0044       IntrVec_t c_7 = MUL(a_3, b_1);
0045       ST(c, 3, c_3);
0046       ST(c, 4, c_4);
0047       ST(c, 5, c_5);
0048       IntrVec_t c_8 = MUL(a_3, b_3);
0049 
0050       c_6 = FMA(a_4, b_1, c_6);
0051       c_7 = FMA(a_4, b_2, c_7);
0052       c_8 = FMA(a_4, b_4, c_8);
0053 
0054       IntrVec_t a_5 = LD(a, 5);
0055       c_6 = FMA(a_5, b_3, c_6);
0056       c_7 = FMA(a_5, b_4, c_7);
0057       c_8 = FMA(a_5, b_5, c_8);
0058 
0059       IntrVec_t a_6 = LD(a, 6);
0060       IntrVec_t c_9 = MUL(a_6, b_0);
0061       ST(c, 6, c_6);
0062       ST(c, 7, c_7);
0063       ST(c, 8, c_8);
0064       IntrVec_t c_10 = MUL(a_6, b_1);
0065       IntrVec_t c_11 = MUL(a_6, b_3);
0066 
0067       IntrVec_t a_7 = LD(a, 7);
0068       c_9 = FMA(a_7, b_1, c_9);
0069       c_10 = FMA(a_7, b_2, c_10);
0070       c_11 = FMA(a_7, b_4, c_11);
0071 
0072       IntrVec_t a_8 = LD(a, 8);
0073       c_9 = FMA(a_8, b_3, c_9);
0074       c_10 = FMA(a_8, b_4, c_10);
0075       c_11 = FMA(a_8, b_5, c_11);
0076 
0077       IntrVec_t a_10 = LD(a, 10);
0078       IntrVec_t c_12 = MUL(a_10, b_0);
0079       ST(c, 9, c_9);
0080       ST(c, 10, c_10);
0081       ST(c, 11, c_11);
0082       IntrVec_t c_13 = MUL(a_10, b_1);
0083       IntrVec_t c_14 = MUL(a_10, b_3);
0084 
0085       IntrVec_t a_11 = LD(a, 11);
0086       c_12 = FMA(a_11, b_1, c_12);
0087       c_13 = FMA(a_11, b_2, c_13);
0088       c_14 = FMA(a_11, b_4, c_14);
0089 
0090       IntrVec_t a_12 = LD(a, 12);
0091       c_12 = FMA(a_12, b_3, c_12);
0092       c_13 = FMA(a_12, b_4, c_13);
0093       c_14 = FMA(a_12, b_5, c_14);
0094 
0095       IntrVec_t a_15 = LD(a, 15);
0096       IntrVec_t c_15 = MUL(a_15, b_0);
0097       ST(c, 12, c_12);
0098       ST(c, 13, c_13);
0099       ST(c, 14, c_14);
0100       IntrVec_t c_16 = MUL(a_15, b_1);
0101       IntrVec_t c_17 = MUL(a_15, b_3);
0102 
0103       IntrVec_t a_16 = LD(a, 16);
0104       c_15 = FMA(a_16, b_1, c_15);
0105       c_16 = FMA(a_16, b_2, c_16);
0106       c_17 = FMA(a_16, b_4, c_17);
0107 
0108       IntrVec_t a_17 = LD(a, 17);
0109       c_15 = FMA(a_17, b_3, c_15);
0110       c_16 = FMA(a_17, b_4, c_16);
0111       c_17 = FMA(a_17, b_5, c_17);
0112 
0113       ST(c, 15, c_15);
0114       ST(c, 16, c_16);
0115       ST(c, 17, c_17);
0116    }
0117 
0118 #else
0119 
0120 #pragma omp simd
0121    for (int n = 0; n < N; ++n)
0122    {
0123       c[ 0*N+n] = a[ 0*N+n]*b[ 0*N+n] + a[ 1*N+n]*b[ 1*N+n] + a[ 3*N+n]*b[ 3*N+n];
0124       c[ 1*N+n] = a[ 0*N+n]*b[ 1*N+n] + a[ 1*N+n]*b[ 2*N+n] + a[ 3*N+n]*b[ 4*N+n];
0125       c[ 2*N+n] = a[ 0*N+n]*b[ 3*N+n] + a[ 1*N+n]*b[ 4*N+n] + a[ 3*N+n]*b[ 5*N+n];
0126       c[ 3*N+n] = a[ 1*N+n]*b[ 0*N+n] + a[ 2*N+n]*b[ 1*N+n] + a[ 4*N+n]*b[ 3*N+n];
0127       c[ 4*N+n] = a[ 1*N+n]*b[ 1*N+n] + a[ 2*N+n]*b[ 2*N+n] + a[ 4*N+n]*b[ 4*N+n];
0128       c[ 5*N+n] = a[ 1*N+n]*b[ 3*N+n] + a[ 2*N+n]*b[ 4*N+n] + a[ 4*N+n]*b[ 5*N+n];
0129       c[ 6*N+n] = a[ 3*N+n]*b[ 0*N+n] + a[ 4*N+n]*b[ 1*N+n] + a[ 5*N+n]*b[ 3*N+n];
0130       c[ 7*N+n] = a[ 3*N+n]*b[ 1*N+n] + a[ 4*N+n]*b[ 2*N+n] + a[ 5*N+n]*b[ 4*N+n];
0131       c[ 8*N+n] = a[ 3*N+n]*b[ 3*N+n] + a[ 4*N+n]*b[ 4*N+n] + a[ 5*N+n]*b[ 5*N+n];
0132       c[ 9*N+n] = a[ 6*N+n]*b[ 0*N+n] + a[ 7*N+n]*b[ 1*N+n] + a[ 8*N+n]*b[ 3*N+n];
0133       c[10*N+n] = a[ 6*N+n]*b[ 1*N+n] + a[ 7*N+n]*b[ 2*N+n] + a[ 8*N+n]*b[ 4*N+n];
0134       c[11*N+n] = a[ 6*N+n]*b[ 3*N+n] + a[ 7*N+n]*b[ 4*N+n] + a[ 8*N+n]*b[ 5*N+n];
0135       c[12*N+n] = a[10*N+n]*b[ 0*N+n] + a[11*N+n]*b[ 1*N+n] + a[12*N+n]*b[ 3*N+n];
0136       c[13*N+n] = a[10*N+n]*b[ 1*N+n] + a[11*N+n]*b[ 2*N+n] + a[12*N+n]*b[ 4*N+n];
0137       c[14*N+n] = a[10*N+n]*b[ 3*N+n] + a[11*N+n]*b[ 4*N+n] + a[12*N+n]*b[ 5*N+n];
0138       c[15*N+n] = a[15*N+n]*b[ 0*N+n] + a[16*N+n]*b[ 1*N+n] + a[17*N+n]*b[ 3*N+n];
0139       c[16*N+n] = a[15*N+n]*b[ 1*N+n] + a[16*N+n]*b[ 2*N+n] + a[17*N+n]*b[ 4*N+n];
0140       c[17*N+n] = a[15*N+n]*b[ 3*N+n] + a[16*N+n]*b[ 4*N+n] + a[17*N+n]*b[ 5*N+n];
0141    }
0142 #endif