File indexing completed on 2024-04-06 12:30:50
0001 #include "Geometry/RPCGeometry/interface/RPCRoll.h"
0002 #include "Geometry/RPCGeometry/interface/RPCRollSpecs.h"
0003 #include "SimMuon/RPCDigitizer/src/RPCSimAsymmetricCls.h"
0004 #include "SimMuon/RPCDigitizer/src/RPCSimSetUp.h"
0005
0006 #include "SimMuon/RPCDigitizer/src/RPCSynchronizer.h"
0007 #include "Geometry/CommonTopologies/interface/RectangularStripTopology.h"
0008 #include "Geometry/CommonTopologies/interface/TrapezoidalStripTopology.h"
0009 #include "Geometry/RPCGeometry/interface/RPCGeomServ.h"
0010
0011 #include <cmath>
0012
0013 #include "FWCore/Framework/interface/Frameworkfwd.h"
0014 #include "FWCore/Framework/interface/EventSetup.h"
0015 #include "FWCore/Framework/interface/Event.h"
0016 #include "FWCore/ParameterSet/interface/ParameterSet.h"
0017
0018 #include "SimDataFormats/TrackingHit/interface/PSimHitContainer.h"
0019 #include "SimDataFormats/TrackingHit/interface/PSimHit.h"
0020 #include "Geometry/RPCGeometry/interface/RPCGeometry.h"
0021 #include "Geometry/Records/interface/MuonGeometryRecord.h"
0022 #include "DataFormats/MuonDetId/interface/RPCDetId.h"
0023 #include "SimMuon/RPCDigitizer/src/RPCSimSetUp.h"
0024
0025 #include <cstring>
0026 #include <iostream>
0027 #include <fstream>
0028 #include <string>
0029 #include <vector>
0030 #include <cstdlib>
0031 #include <utility>
0032 #include <map>
0033
0034 #include "CLHEP/Random/RandFlat.h"
0035 #include "CLHEP/Random/RandPoissonQ.h"
0036
0037 using namespace std;
0038
0039 RPCSimAsymmetricCls::RPCSimAsymmetricCls(const edm::ParameterSet& config) : RPCSim(config) {
0040 aveEff = config.getParameter<double>("averageEfficiency");
0041 aveCls = config.getParameter<double>("averageClusterSize");
0042 resRPC = config.getParameter<double>("timeResolution");
0043 timOff = config.getParameter<double>("timingRPCOffset");
0044 dtimCs = config.getParameter<double>("deltatimeAdjacentStrip");
0045 resEle = config.getParameter<double>("timeJitter");
0046 sspeed = config.getParameter<double>("signalPropagationSpeed");
0047 lbGate = config.getParameter<double>("linkGateWidth");
0048 rpcdigiprint = config.getParameter<bool>("printOutDigitizer");
0049 eledig = config.getParameter<bool>("digitizeElectrons");
0050
0051 rate = config.getParameter<double>("Rate");
0052 nbxing = config.getParameter<int>("Nbxing");
0053 gate = config.getParameter<double>("Gate");
0054 frate = config.getParameter<double>("Frate");
0055
0056 if (rpcdigiprint) {
0057 std::cout << "Average Efficiency = " << aveEff << std::endl;
0058 std::cout << "Average Cluster Size = " << aveCls << " strips" << std::endl;
0059 std::cout << "RPC Time Resolution = " << resRPC << " ns" << std::endl;
0060 std::cout << "RPC Signal formation time = " << timOff << " ns" << std::endl;
0061 std::cout << "RPC adjacent strip delay = " << dtimCs << " ns" << std::endl;
0062 std::cout << "Electronic Jitter = " << resEle << " ns" << std::endl;
0063 std::cout << "Signal propagation time = " << sspeed << " x c" << std::endl;
0064 std::cout << "Link Board Gate Width = " << lbGate << " ns" << std::endl;
0065 }
0066
0067 _rpcSync = new RPCSynchronizer(config);
0068 }
0069
0070 RPCSimAsymmetricCls::~RPCSimAsymmetricCls() { delete _rpcSync; }
0071
0072 int RPCSimAsymmetricCls::getClSize(uint32_t id, float posX, CLHEP::HepRandomEngine* engine) {
0073 std::vector<double> clsForDetId = getRPCSimSetUp()->getAsymmetricClsDistribution(id, slice(posX));
0074
0075 int cnt = 1;
0076 int min = 1;
0077
0078 double rr_cl = CLHEP::RandFlat::shoot(engine);
0079 LogDebug("RPCSimAsymmetricCls") << "[RPCSimAsymmetricCls::getClSize] Fired RandFlat :: " << rr_cl;
0080 for (unsigned int i = 0; i < clsForDetId.size(); i++) {
0081 cnt++;
0082 if (rr_cl > clsForDetId[i]) {
0083 min = cnt;
0084 } else if (rr_cl < clsForDetId[i]) {
0085 break;
0086 }
0087 }
0088 return min;
0089 }
0090
0091 int RPCSimAsymmetricCls::getClSize(float posX, CLHEP::HepRandomEngine* engine) {
0092 std::map<int, std::vector<double> > clsMap = getRPCSimSetUp()->getClsMap();
0093
0094 int cnt = 1;
0095 int min = 1;
0096 double func = 0.0;
0097 std::vector<double> sum_clsize;
0098
0099 double rr_cl = CLHEP::RandFlat::shoot(engine);
0100 LogDebug("RPCSimAsymmetricCls") << "[RPCSimAsymmetricCls::getClSize] Fired RandFlat :: " << rr_cl;
0101
0102 if (0.0 <= posX && posX < 0.2) {
0103 func = (clsMap[1])[(clsMap[1]).size() - 1] * (rr_cl);
0104 sum_clsize = clsMap[1];
0105 }
0106 if (0.2 <= posX && posX < 0.4) {
0107 func = (clsMap[2])[(clsMap[2]).size() - 1] * (rr_cl);
0108 sum_clsize = clsMap[2];
0109 }
0110 if (0.4 <= posX && posX < 0.6) {
0111 func = (clsMap[3])[(clsMap[3]).size() - 1] * (rr_cl);
0112 sum_clsize = clsMap[3];
0113 }
0114 if (0.6 <= posX && posX < 0.8) {
0115 func = (clsMap[4])[(clsMap[4]).size() - 1] * (rr_cl);
0116 sum_clsize = clsMap[4];
0117 }
0118 if (0.8 <= posX && posX < 1.0) {
0119 func = (clsMap[5])[(clsMap[5]).size() - 1] * (rr_cl);
0120 sum_clsize = clsMap[5];
0121 }
0122
0123 for (vector<double>::iterator iter = sum_clsize.begin(); iter != sum_clsize.end(); ++iter) {
0124 cnt++;
0125 if (func > (*iter)) {
0126 min = cnt;
0127 } else if (func < (*iter)) {
0128 break;
0129 }
0130 }
0131 return min;
0132 }
0133
0134 void RPCSimAsymmetricCls::simulate(const RPCRoll* roll,
0135 const edm::PSimHitContainer& rpcHits,
0136 CLHEP::HepRandomEngine* engine) {
0137 _rpcSync->setRPCSimSetUp(getRPCSimSetUp());
0138 theRpcDigiSimLinks.clear();
0139 theDetectorHitMap.clear();
0140 theRpcDigiSimLinks = RPCDigiSimLinks(roll->id().rawId());
0141
0142 RPCDetId rpcId = roll->id();
0143 RPCGeomServ RPCname(rpcId);
0144 std::string nameRoll = RPCname.name();
0145
0146 const Topology& topology = roll->specs()->topology();
0147 for (edm::PSimHitContainer::const_iterator _hit = rpcHits.begin(); _hit != rpcHits.end(); ++_hit) {
0148 if (!eledig && _hit->particleType() == 11)
0149 continue;
0150
0151 const LocalPoint& entr = _hit->entryPoint();
0152
0153 int time_hit = _rpcSync->getSimHitBx(&(*_hit), engine);
0154 float posX = roll->strip(_hit->localPosition()) - static_cast<int>(roll->strip(_hit->localPosition()));
0155
0156 std::vector<float> veff = (getRPCSimSetUp())->getEff(rpcId.rawId());
0157
0158 #ifdef EDM_ML_DEBUG
0159 std::stringstream veffstream;
0160 veffstream << "[";
0161 for (std::vector<float>::iterator veffIt = veff.begin(); veffIt != veff.end(); ++veffIt) {
0162 veffstream << (*veffIt) << ",";
0163 }
0164 veffstream << "]";
0165 std::string veffstr = veffstream.str();
0166 LogDebug("RPCSimAsymmetricCls") << "Get Eff from RPCSimSetup for detId = " << rpcId.rawId() << " :: " << veffstr;
0167 #endif
0168
0169
0170 int centralStrip = topology.channel(entr) + 1;
0171 float fire = CLHEP::RandFlat::shoot(engine);
0172 LogDebug("RPCSimAsymmetricCls") << "[RPCSimAsymmetricCls::simulate] Fired RandFlat :: " << fire << " --> < "
0173 << veff[centralStrip - 1] << " ? --> " << ((fire < veff[centralStrip - 1]) ? 1 : 0);
0174
0175 if (fire < veff[centralStrip - 1]) {
0176 LogDebug("RPCSimAsymmetricCls") << "Detector is Efficient for this simhit";
0177
0178 int fstrip = centralStrip;
0179 int lstrip = centralStrip;
0180
0181
0182
0183
0184
0185
0186
0187 int clsize = this->getClSize(rpcId.rawId(), posX, engine);
0188 LogDebug("RPCSimAsymmetricCls") << "Clustersize = " << clsize;
0189
0190 std::vector<int> cls;
0191
0192 cls.push_back(centralStrip);
0193 if (clsize > 1) {
0194 for (int cl = 0; cl < (clsize - 1) / 2; cl++) {
0195 if (centralStrip - cl - 1 >= 1) {
0196 fstrip = centralStrip - cl - 1;
0197 cls.push_back(fstrip);
0198 }
0199 if (centralStrip + cl + 1 <= roll->nstrips()) {
0200 lstrip = centralStrip + cl + 1;
0201 cls.push_back(lstrip);
0202 }
0203 }
0204 if (clsize % 2 == 0) {
0205 if (clsize > 5) {
0206
0207
0208
0209
0210 double deltaw = roll->centreOfStrip(centralStrip).x() - entr.x();
0211 if (deltaw < 0.) {
0212 if (lstrip < roll->nstrips()) {
0213 lstrip++;
0214 cls.push_back(lstrip);
0215 }
0216 } else {
0217 if (fstrip > 1) {
0218 fstrip--;
0219 cls.push_back(fstrip);
0220 }
0221 }
0222 } else {
0223
0224
0225 if (lstrip < roll->nstrips()) {
0226 lstrip++;
0227 cls.push_back(lstrip);
0228 }
0229 }
0230 }
0231 }
0232
0233
0234 float fire1 = CLHEP::RandFlat::shoot(engine);
0235 LogDebug("RPCSimAsymmetricCls") << "[RPCSimAsymmetricCls::simulate] Fired RandFlat :: " << fire1
0236 << " (fire1 is used for a shift of the cluster)";
0237
0238 int strip_shift = 0;
0239
0240 int offset;
0241
0242 if (clsize % 2 == 0) {
0243 offset = 2;
0244 } else {
0245 offset = 1;
0246 }
0247
0248
0249 if (clsize > 5) {
0250 strip_shift = 0;
0251 } else {
0252 std::vector<double> TMPclsAsymmForDetId = getRPCSimSetUp()->getAsymmetryForCls(rpcId, slice(posX), clsize);
0253
0254 for (unsigned int i = 0; i < TMPclsAsymmForDetId.size(); i++) {
0255 if (fire1 < TMPclsAsymmForDetId[i]) {
0256 strip_shift = i - offset;
0257 break;
0258 }
0259 }
0260 }
0261
0262 vector<int> shifted_cls;
0263 shifted_cls.clear();
0264
0265 int min_strip = 100;
0266 int max_strip = 0;
0267
0268
0269 for (std::vector<int>::iterator i = cls.begin(); i != cls.end(); i++) {
0270 if (*i + strip_shift < min_strip) {
0271 min_strip = *i + strip_shift;
0272 }
0273 if (*i + strip_shift > max_strip) {
0274 max_strip = *i + strip_shift;
0275 }
0276 }
0277
0278 if (min_strip < 1 || max_strip - roll->nstrips() > 0) {
0279 strip_shift = 0;
0280 }
0281
0282
0283 for (std::vector<int>::iterator i = cls.begin(); i != cls.end(); i++) {
0284 shifted_cls.push_back(*i + strip_shift);
0285 }
0286 for (std::vector<int>::iterator i = shifted_cls.begin(); i != shifted_cls.end(); i++) {
0287
0288 if (*i != centralStrip) {
0289 double fire2 = CLHEP::RandFlat::shoot(engine);
0290 LogDebug("RPCSimAsymmetricCls") << "[RPCSimAsymmetricCls::simulate] Fired RandFlat :: " << fire2
0291 << " (check whether adjacent strips are efficient)";
0292 if (fire2 < veff[*i - 1]) {
0293 std::pair<int, int> digi(*i, time_hit);
0294 strips.insert(digi);
0295 LogDebug("RPCSimAsymmetricCls")
0296 << "RPC Digi inserted :: Signl :: DetId :: " << rpcId << " = " << rpcId.rawId() << " ==> digi <"
0297 << digi.first << "," << digi.second << ">";
0298
0299 theDetectorHitMap.insert(DetectorHitMap::value_type(digi, &(*_hit)));
0300 }
0301 } else {
0302 std::pair<int, int> digi(*i, time_hit);
0303 theDetectorHitMap.insert(DetectorHitMap::value_type(digi, &(*_hit)));
0304
0305 strips.insert(digi);
0306 LogDebug("RPCSimAsymmetricCls") << "RPC Digi inserted :: Signl :: DetId :: " << rpcId << " = "
0307 << rpcId.rawId() << " ==> digi <" << digi.first << "," << digi.second << ">";
0308 }
0309 }
0310 }
0311 }
0312 }
0313
0314 void RPCSimAsymmetricCls::simulateNoise(const RPCRoll* roll, CLHEP::HepRandomEngine* engine) {
0315 RPCDetId rpcId = roll->id();
0316
0317 RPCGeomServ RPCname(rpcId);
0318 std::string nameRoll = RPCname.name();
0319
0320 std::vector<float> vnoise = (getRPCSimSetUp())->getNoise(rpcId.rawId());
0321 std::vector<float> veff = (getRPCSimSetUp())->getEff(rpcId.rawId());
0322
0323 LogDebug("RPCSimAsymmetricCls") << "[RPCSimAsymmetricCls::simulateNoise] Treating DetId :: " << rpcId << " = "
0324 << rpcId.rawId() << " which has " << roll->nstrips() << " strips";
0325
0326 #ifdef EDM_ML_DEBUG
0327 std::stringstream vnoisestream;
0328 vnoisestream << "[";
0329 for (std::vector<float>::iterator vnoiseIt = vnoise.begin(); vnoiseIt != vnoise.end(); ++vnoiseIt) {
0330 vnoisestream << (*vnoiseIt) << ",";
0331 }
0332 vnoisestream << "]";
0333 std::string vnoisestr = vnoisestream.str();
0334 LogDebug("RPCSimAsymmetricCls") << "Get Noise from RPCSimSetup for detId = " << rpcId.rawId() << " :: vector with "
0335 << vnoise.size() << "entries :: " << vnoisestr;
0336 #endif
0337
0338 unsigned int nstrips = roll->nstrips();
0339 double area = 0.0;
0340
0341 if (rpcId.region() == 0) {
0342 const RectangularStripTopology* top_ = dynamic_cast<const RectangularStripTopology*>(&(roll->topology()));
0343 float xmin = (top_->localPosition(0.)).x();
0344 float xmax = (top_->localPosition((float)roll->nstrips())).x();
0345 float striplength = (top_->stripLength());
0346 area = striplength * (xmax - xmin);
0347 } else {
0348 const TrapezoidalStripTopology* top_ = dynamic_cast<const TrapezoidalStripTopology*>(&(roll->topology()));
0349 float xmin = (top_->localPosition(0.)).x();
0350 float xmax = (top_->localPosition((float)roll->nstrips())).x();
0351 float striplength = (top_->stripLength());
0352 area = striplength * (xmax - xmin);
0353 }
0354
0355 LogDebug("RPCSimAsymmetricCls") << "Noise :: vnoise.size() = " << vnoise.size();
0356
0357 for (unsigned int j = 0; j < vnoise.size(); ++j) {
0358 if (j >= nstrips)
0359 break;
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369 double ave = vnoise[j] * nbxing * gate * area * 1.0e-9 * frate / ((float)roll->nstrips());
0370 LogDebug("RPCSimAsymmetricCls") << "Noise :: strip " << j << " Average = " << ave
0371 << " = vnoise[j]*nbxing*gate*area*1.0e-9*frate/((float)roll->nstrips()) = "
0372 << vnoise[j] << "*" << nbxing << "*" << gate << "*" << area << "*" << 1.0e-9 << "*"
0373 << frate << "/" << ((float)roll->nstrips());
0374
0375 CLHEP::RandPoissonQ randPoissonQ(*engine, ave);
0376 N_hits = randPoissonQ.fire();
0377 LogDebug("RPCSimAsymmetricCls") << "[RPCSimAsymmetricCls::simulateNoise] Fired RandPoissonQ :: " << N_hits;
0378 LogDebug("RPCSimAsymmetricCls") << "Noise :: Amount of Noise Hits for DetId :: " << rpcId << " = " << rpcId.rawId()
0379 << " = N_hits = randPoissonQ.fire() = " << N_hits;
0380
0381 for (int i = 0; i < N_hits; i++) {
0382 double time2 = CLHEP::RandFlat::shoot((nbxing * gate) / gate);
0383 LogDebug("RPCSimAsymmetricCls") << "[RPCSimAsymmetricCls::simulateNoise] Fired RandFlat :: " << time2;
0384 int time_hit = (static_cast<int>(time2) - nbxing / 2);
0385 std::pair<int, int> digi(j + 1, time_hit);
0386 strips.insert(digi);
0387 LogDebug("RPCSimAsymmetricCls") << "RPC Digi inserted :: Noise :: DetId :: " << rpcId << " = " << rpcId.rawId()
0388 << " ==> digi <" << digi.first << "," << digi.second << ">";
0389 }
0390 }
0391 }
0392
0393 unsigned int RPCSimAsymmetricCls::slice(float posX) {
0394 if (0.0 <= posX && posX < 0.2) {
0395 return 0;
0396 } else if (0.2 <= posX && posX < 0.4) {
0397 return 1;
0398 } else if (0.4 <= posX && posX < 0.6) {
0399 return 2;
0400 } else if (0.6 <= posX && posX < 0.8) {
0401 return 3;
0402 } else if (0.8 <= posX && posX < 1.0) {
0403 return 4;
0404 } else
0405 return 2;
0406 }