Back to home page

Project CMSSW displayed by LXR

 
 

    


File indexing completed on 2022-01-07 23:36:48

0001 #include "Geometry/RPCGeometry/interface/RPCRoll.h"
0002 #include "Geometry/RPCGeometry/interface/RPCRollSpecs.h"
0003 #include "SimMuon/RPCDigitizer/src/RPCSimAverageNoiseEffCls.h"
0004 #include "SimMuon/RPCDigitizer/src/RPCSimSetUp.h"
0005 
0006 #include "SimMuon/RPCDigitizer/src/RPCSynchronizer.h"
0007 #include "Geometry/CommonTopologies/interface/RectangularStripTopology.h"
0008 #include "Geometry/CommonTopologies/interface/TrapezoidalStripTopology.h"
0009 #include "Geometry/RPCGeometry/interface/RPCGeomServ.h"
0010 
0011 #include <cmath>
0012 
0013 #include "FWCore/Framework/interface/Frameworkfwd.h"
0014 #include "FWCore/Framework/interface/EventSetup.h"
0015 #include "FWCore/Framework/interface/Event.h"
0016 #include "FWCore/ParameterSet/interface/ParameterSet.h"
0017 
0018 #include "SimDataFormats/TrackingHit/interface/PSimHitContainer.h"
0019 #include "SimDataFormats/TrackingHit/interface/PSimHit.h"
0020 #include "Geometry/RPCGeometry/interface/RPCGeometry.h"
0021 #include "Geometry/Records/interface/MuonGeometryRecord.h"
0022 #include "DataFormats/MuonDetId/interface/RPCDetId.h"
0023 #include "SimMuon/RPCDigitizer/src/RPCSimSetUp.h"
0024 
0025 #include <cstring>
0026 #include <iostream>
0027 #include <fstream>
0028 #include <string>
0029 #include <vector>
0030 #include <cstdlib>
0031 #include <utility>
0032 #include <map>
0033 
0034 #include "CLHEP/Random/RandFlat.h"
0035 #include "CLHEP/Random/RandPoissonQ.h"
0036 
0037 #include "FWCore/MessageLogger/interface/MessageLogger.h"
0038 
0039 using namespace std;
0040 
0041 RPCSimAverageNoiseEffCls::RPCSimAverageNoiseEffCls(const edm::ParameterSet& config) : RPCSim(config) {
0042   aveEff = config.getParameter<double>("averageEfficiency");
0043   aveCls = config.getParameter<double>("averageClusterSize");
0044   resRPC = config.getParameter<double>("timeResolution");
0045   timOff = config.getParameter<double>("timingRPCOffset");
0046   dtimCs = config.getParameter<double>("deltatimeAdjacentStrip");
0047   resEle = config.getParameter<double>("timeJitter");
0048   sspeed = config.getParameter<double>("signalPropagationSpeed");
0049   lbGate = config.getParameter<double>("linkGateWidth");
0050   rpcdigiprint = config.getParameter<bool>("printOutDigitizer");
0051   eledig = config.getParameter<bool>("digitizeElectrons");  //flag to turn on/off electron digitization
0052 
0053   rate = config.getParameter<double>("Rate");
0054   nbxing = config.getParameter<int>("Nbxing");
0055   gate = config.getParameter<double>("Gate");
0056   frate = config.getParameter<double>("Frate");
0057 
0058   if (rpcdigiprint) {
0059     edm::LogInfo("RPC digitizer parameters") << "Average Efficiency        = " << aveEff << '\n'
0060                                              << "Average Cluster Size      = " << aveCls << " strips" << '\n'
0061                                              << "RPC Time Resolution       = " << resRPC << " ns" << '\n'
0062                                              << "RPC Signal formation time = " << timOff << " ns" << '\n'
0063                                              << "RPC adjacent strip delay  = " << dtimCs << " ns" << '\n'
0064                                              << "Electronic Jitter         = " << resEle << " ns" << '\n'
0065                                              << "Signal propagation time   = " << sspeed << " x c" << '\n'
0066                                              << "Link Board Gate Width     = " << lbGate << " ns" << '\n';
0067   }
0068 
0069   _rpcSync = new RPCSynchronizer(config);
0070 }
0071 
0072 RPCSimAverageNoiseEffCls::~RPCSimAverageNoiseEffCls() { delete _rpcSync; }
0073 
0074 int RPCSimAverageNoiseEffCls::getClSize(uint32_t id, float posX, CLHEP::HepRandomEngine* engine) {
0075   std::vector<double> clsForDetId = getRPCSimSetUp()->getCls(id);
0076 
0077   int cnt = 1;
0078   int min = 1;
0079   double func = 0.0;
0080   std::vector<double> sum_clsize;
0081 
0082   sum_clsize.clear();
0083   sum_clsize = clsForDetId;
0084   int vectOffset(0);
0085 
0086   double rr_cl = CLHEP::RandFlat::shoot(engine);
0087 
0088   if (0.0 <= posX && posX < 0.2) {
0089     func = clsForDetId[19] * (rr_cl);
0090     vectOffset = 0;
0091   }
0092   if (0.2 <= posX && posX < 0.4) {
0093     func = clsForDetId[39] * (rr_cl);
0094     vectOffset = 20;
0095   }
0096   if (0.4 <= posX && posX < 0.6) {
0097     func = clsForDetId[59] * (rr_cl);
0098     vectOffset = 40;
0099   }
0100   if (0.6 <= posX && posX < 0.8) {
0101     func = clsForDetId[79] * (rr_cl);
0102     vectOffset = 60;
0103   }
0104   if (0.8 <= posX && posX < 1.0) {
0105     func = clsForDetId[89] * (rr_cl);
0106     vectOffset = 80;
0107   }
0108 
0109   for (int i = vectOffset; i < (vectOffset + 20); i++) {
0110     cnt++;
0111     if (func > clsForDetId[i]) {
0112       min = cnt;
0113     } else if (func < clsForDetId[i]) {
0114       break;
0115     }
0116   }
0117   return min;
0118 }
0119 
0120 int RPCSimAverageNoiseEffCls::getClSize(float posX, CLHEP::HepRandomEngine* engine) {
0121   std::map<int, std::vector<double> > clsMap = getRPCSimSetUp()->getClsMap();
0122 
0123   int cnt = 1;
0124   int min = 1;
0125   double func = 0.0;
0126   std::vector<double> sum_clsize;
0127 
0128   double rr_cl = CLHEP::RandFlat::shoot(engine);
0129   if (0.0 <= posX && posX < 0.2) {
0130     func = (clsMap[1])[(clsMap[1]).size() - 1] * (rr_cl);
0131     sum_clsize = clsMap[1];
0132   }
0133   if (0.2 <= posX && posX < 0.4) {
0134     func = (clsMap[2])[(clsMap[2]).size() - 1] * (rr_cl);
0135     sum_clsize = clsMap[2];
0136   }
0137   if (0.4 <= posX && posX < 0.6) {
0138     func = (clsMap[3])[(clsMap[3]).size() - 1] * (rr_cl);
0139     sum_clsize = clsMap[3];
0140   }
0141   if (0.6 <= posX && posX < 0.8) {
0142     func = (clsMap[4])[(clsMap[4]).size() - 1] * (rr_cl);
0143     sum_clsize = clsMap[4];
0144   }
0145   if (0.8 <= posX && posX < 1.0) {
0146     func = (clsMap[5])[(clsMap[5]).size() - 1] * (rr_cl);
0147     sum_clsize = clsMap[5];
0148   }
0149 
0150   for (vector<double>::iterator iter = sum_clsize.begin(); iter != sum_clsize.end(); ++iter) {
0151     cnt++;
0152     if (func > (*iter)) {
0153       min = cnt;
0154     } else if (func < (*iter)) {
0155       break;
0156     }
0157   }
0158   return min;
0159 }
0160 
0161 void RPCSimAverageNoiseEffCls::simulate(const RPCRoll* roll,
0162                                         const edm::PSimHitContainer& rpcHits,
0163                                         CLHEP::HepRandomEngine* engine) {
0164   _rpcSync->setRPCSimSetUp(getRPCSimSetUp());
0165   theRpcDigiSimLinks.clear();
0166   theDetectorHitMap.clear();
0167   theRpcDigiSimLinks = RPCDigiSimLinks(roll->id().rawId());
0168 
0169   RPCDetId rpcId = roll->id();
0170   RPCGeomServ RPCname(rpcId);
0171   //std::string nameRoll = RPCname.name();
0172 
0173   const Topology& topology = roll->specs()->topology();
0174 
0175   for (edm::PSimHitContainer::const_iterator _hit = rpcHits.begin(); _hit != rpcHits.end(); ++_hit) {
0176     if (!eledig && _hit->particleType() == 11)
0177       continue;
0178     // Here I hould check if the RPC are up side down;
0179     const LocalPoint& entr = _hit->entryPoint();
0180 
0181     int time_hit = _rpcSync->getSimHitBx(&(*_hit), engine);
0182     float posX = roll->strip(_hit->localPosition()) - static_cast<int>(roll->strip(_hit->localPosition()));
0183 
0184     std::vector<float> veff = (getRPCSimSetUp())->getEff(rpcId.rawId());
0185 
0186     // Effinciecy
0187     int centralStrip = topology.channel(entr) + 1;
0188     ;
0189     float fire = CLHEP::RandFlat::shoot(engine);
0190 
0191     if (fire < veff[centralStrip - 1]) {
0192       int fstrip = centralStrip;
0193       int lstrip = centralStrip;
0194 
0195       // Compute the cluster size
0196       int clsize = this->getClSize(rpcId.rawId(), posX, engine);  // This is for cluster size chamber by chamber
0197       std::vector<int> cls;
0198       cls.push_back(centralStrip);
0199       if (clsize > 1) {
0200         for (int cl = 0; cl < (clsize - 1) / 2; cl++) {
0201           if (centralStrip - cl - 1 >= 1) {
0202             fstrip = centralStrip - cl - 1;
0203             cls.push_back(fstrip);
0204           }
0205           if (centralStrip + cl + 1 <= roll->nstrips()) {
0206             lstrip = centralStrip + cl + 1;
0207             cls.push_back(lstrip);
0208           }
0209         }
0210         if (clsize % 2 == 0) {
0211           // insert the last strip according to the
0212           // simhit position in the central strip
0213           double deltaw = roll->centreOfStrip(centralStrip).x() - entr.x();
0214           if (deltaw < 0.) {
0215             if (lstrip < roll->nstrips()) {
0216               lstrip++;
0217               cls.push_back(lstrip);
0218             }
0219           } else {
0220             if (fstrip > 1) {
0221               fstrip--;
0222               cls.push_back(fstrip);
0223             }
0224           }
0225         }
0226       }
0227 
0228       for (std::vector<int>::iterator i = cls.begin(); i != cls.end(); i++) {
0229         // Check the timing of the adjacent strip
0230         if (*i != centralStrip) {
0231           if (CLHEP::RandFlat::shoot(engine) < veff[*i - 1]) {
0232             std::pair<int, int> digi(*i, time_hit);
0233             strips.insert(digi);
0234 
0235             theDetectorHitMap.insert(DetectorHitMap::value_type(digi, &(*_hit)));
0236           }
0237         } else {
0238           std::pair<int, int> digi(*i, time_hit);
0239           theDetectorHitMap.insert(DetectorHitMap::value_type(digi, &(*_hit)));
0240 
0241           strips.insert(digi);
0242         }
0243       }
0244     }
0245   }
0246 }
0247 
0248 void RPCSimAverageNoiseEffCls::simulateNoise(const RPCRoll* roll, CLHEP::HepRandomEngine* engine) {
0249   RPCDetId rpcId = roll->id();
0250 
0251   RPCGeomServ RPCname(rpcId);
0252 
0253   std::vector<float> vnoise = (getRPCSimSetUp())->getNoise(rpcId.rawId());
0254   std::vector<float> veff = (getRPCSimSetUp())->getEff(rpcId.rawId());
0255 
0256   unsigned int nstrips = roll->nstrips();
0257   double area = 0.0;
0258 
0259   if (rpcId.region() == 0) {
0260     const RectangularStripTopology* top_ = dynamic_cast<const RectangularStripTopology*>(&(roll->topology()));
0261     float xmin = (top_->localPosition(0.)).x();
0262     float xmax = (top_->localPosition((float)roll->nstrips())).x();
0263     float striplength = (top_->stripLength());
0264     area = striplength * (xmax - xmin);
0265   } else {
0266     const TrapezoidalStripTopology* top_ = dynamic_cast<const TrapezoidalStripTopology*>(&(roll->topology()));
0267     float xmin = (top_->localPosition(0.)).x();
0268     float xmax = (top_->localPosition((float)roll->nstrips())).x();
0269     float striplength = (top_->stripLength());
0270     area = striplength * (xmax - xmin);
0271   }
0272 
0273   for (unsigned int j = 0; j < vnoise.size(); ++j) {
0274     if (j >= nstrips)
0275       break;
0276 
0277     // The efficiency of 0% does not imply on the noise rate.
0278     // If the strip is masked the noise rate should be 0 Hz/cm^2
0279     //    if(veff[j] == 0) continue;
0280 
0281     //    double ave = vnoise[j]*nbxing*gate*area*1.0e-9*frate;
0282     // The vnoise is the noise rate per strip, so we shout multiply not
0283     // by the chamber area,
0284     // but the strip area which is area/((float)roll->nstrips()));
0285     double ave = vnoise[j] * nbxing * gate * area * 1.0e-9 * frate / ((float)roll->nstrips());
0286 
0287     CLHEP::RandPoissonQ randPoissonQ(*engine, ave);
0288     N_hits = randPoissonQ.fire();
0289 
0290     for (int i = 0; i < N_hits; i++) {
0291       int time_hit = (static_cast<int>(CLHEP::RandFlat::shoot(engine, (nbxing * gate) / gate))) - nbxing / 2;
0292       std::pair<int, int> digi(j + 1, time_hit);
0293       strips.insert(digi);
0294     }
0295   }
0296 }