Back to home page

Project CMSSW displayed by LXR

 
 

    


File indexing completed on 2024-10-16 05:06:44

0001 import os
0002 import collections
0003 
0004 _sampleName = {
0005     "RelValCloseByParticleGun_CE_H_Fine_300um" : "CloseByParticleGun in CE-H Fine section with 300 um",
0006     "RelValCloseByParticleGun_CE_H_Fine_200um" : "CloseByParticleGun in CE-H Fine section with 200 um",
0007     "RelValCloseByParticleGun_CE_H_Fine_120um" : "CloseByParticleGun in CE-H Fine section with 120 um",
0008     "RelValCloseByParticleGun_CE_H_Coarse_Scint" : "CloseByParticleGun in CE-H Coarse section with scintillator",
0009     "RelValCloseByParticleGun_CE_H_Coarse_300um" : "CloseByParticleGun in CE-H Coarse section with 300 um",
0010     "RelValCloseByParticleGun_CE_E_Front_300um" : "CloseByParticleGun in CE-E Front section with 300 um",
0011     "RelValCloseByParticleGun_CE_E_Front_200um" : "CloseByParticleGun in CE-E Front section with 200 um",
0012     "RelValCloseByPGun_CE_E_Front_120um" : "CloseByParticleGun in CE-E Front section with 120 um",
0013     "RelValCloseByPGun_CE_H_Fine_300um" : "CloseByParticleGun in CE-H Fine section with 300 um",
0014     "RelValCloseByPGun_CE_H_Fine_200um" : "CloseByParticleGun in CE-H Fine section with 200 um",
0015     "RelValCloseByPGun_CE_H_Fine_120um" : "CloseByParticleGun in CE-H Fine section with 120 um",
0016     "RelValCloseByPGun_CE_H_Coarse_Scint" : "CloseByParticleGun in CE-H Coarse section with scintillator",
0017     "RelValCloseByPGun_CE_H_Coarse_300um" : "CloseByParticleGun in CE-H Coarse section with 300 um",
0018     "RelValCloseByPGun_CE_E_Front_300um" : "CloseByParticleGun in CE-E Front section with 300 um",
0019     "RelValCloseByPGun_CE_E_Front_200um" : "CloseByParticleGun in CE-E Front section with 200 um",
0020     "RelValCloseByPGun_CE_E_Front_120um" : "CloseByParticleGun in CE-E Front section with 120 um",
0021     "RelValTTbar" : "TTbar",
0022     "RelValSingleGammaFlatPt8To150" : "Single Gamma Pt 8 GeV to 150 GeV ",
0023     "RelValSingleMuPt10" : "Single Muon Pt 10 GeV",
0024     "RelValSingleMuPt100" : "Single Muon Pt 100 GeV",
0025     "RelValSingleMuPt1000" : "Single Muon Pt 1000 GeV",
0026     "RelValSingleMuFlatPt2To100" : "Single Muon Pt 2 GeV to 100 GeV",
0027     "RelValSingleMuFlatPt0p7To10" : "Single Muon Pt 0.7 GeV to 10 GeV",
0028     "RelValSingleEFlatPt2To100" : "Single Electron Pt 2 GeV to 100 GeV",
0029     "RelValSingleTauFlatPt2To150" : "Single Tau Pt 2 GeV to 150 GeV",
0030     "RelValSinglePiFlatPt0p7To10" : "Single Pion Pt 0.7 GeV to 10 GeV",
0031     "RelValQCD_Pt20toInfMuEnrichPt15" : "QCD Pt 20 GeV to Inf with Muon Pt 15 GeV",
0032     "RelValQCD_Pt15To7000_Flat" : "QCD Pt 15 GeV to 7 TeV",
0033     "RelValZTT" : "ZTauTau",
0034     "RelValZMM" : "ZMuMu",
0035     "RelValZEE" : "ZEleEle",
0036     "RelValB0ToKstarMuMu" : "B0 To Kstar Muon Muon",
0037     "RelValBsToEleEle" : "Bs To Electron Electron",
0038     "RelValBsToMuMu" : "Bs To Muon Muon",
0039     "RelValBsToJpsiGamma" : "Bs To Jpsi Gamma",
0040     "RelValBsToJpsiPhi_mumuKK" : "Bs To JpsiPhi_mumuKK",
0041     "RelValBsToPhiPhi_KKKK" : "Bs To PhiPhi_KKKK",
0042     "RelValDisplacedMuPt30To100" : "Displaced Muon Pt 30 GeV to 100 GeV",
0043     "RelValDisplacedMuPt2To10" : "Displaced Muon Pt 2 GeV to 10 GeV",
0044     "RelValDisplacedMuPt10To30" : "Displaced Muon Pt 10 GeV to 30 GeV",
0045     "RelValTauToMuMuMu" : "Tau To Muon Muon Muon",
0046     "RelValMinBias" : "Min Bias",
0047     "RelValH125GGgluonfusion" : "Higgs to gamma gamma",
0048     "RelValNuGun" : "Neutrino gun",
0049     "RelValZpTT_1500" : "Z prime with 1500 GeV nominal mass",
0050     "RelValTenTau_15_500_Eta3p1" : "Ten Taus with energy from 15 GeV to 500 GeV"
0051 }
0052 
0053 _sampleFileName = {
0054     "RelValCloseByParticleGun_CE_H_Fine_300um" : "closebycehf300",
0055     "RelValCloseByParticleGun_CE_H_Fine_200um" : "closebycehf200",
0056     "RelValCloseByParticleGun_CE_H_Fine_120um" : "closebycehf120",
0057     "RelValCloseByParticleGun_CE_H_Coarse_Scint" : "closebycehcscint",
0058     "RelValCloseByParticleGun_CE_H_Coarse_300um" : "closebycehc300",
0059     "RelValCloseByParticleGun_CE_E_Front_300um" : "closebyceef300",
0060     "RelValCloseByParticleGun_CE_E_Front_200um" : "closebyceef200",
0061     "RelValCloseByParticleGun_CE_E_Front_120um" : "closebyceef120",
0062     "RelValTTbar" : "ttbar",
0063     "RelValSingleGammaFlatPt8To150" : "gam8",
0064     "RelValSingleMuPt10" : "m10",
0065     "RelValSingleMuPt100" : "m100",
0066     "RelValSingleMuPt1000" : "m1000",
0067     "RelValSingleMuFlatPt2To100" : "mflat2t100",
0068     "RelValSingleMuFlatPt0p7To10" : "mflat0p7t10",
0069     "RelValSingleEFlatPt2To100" : "eflat2t100",
0070     "RelValSingleTauFlatPt2To150" : "tauflat2t150",
0071     "RelValSinglePiFlatPt0p7To10" : "piflat0p7t10",
0072     "RelValQCD_Pt20toInfMuEnrichPt15" : "qcd20enmu15",
0073     "RelValQCD_Pt15To7000_Flat" : "qcdflat15",
0074     "RelValZTT" : "ztautau",
0075     "RelValZMM" : "zmm",
0076     "RelValZEE" : "zee",
0077     "RelValB0ToKstarMuMu" : "b0kstmm",
0078     "RelValBsToEleEle" : "bsee",
0079     "RelValBsToMuMu" : "bsmm",
0080     "RelValBsToJpsiGamma" : "bsjpsg",
0081     "RelValBsToJpsiPhi_mumuKK" : "bsjpspmmkk",
0082     "RelValBsToPhiPhi_KKKK" : "bsjpsppkkkk",
0083     "RelValDisplacedMuPt30To100" : "dm30",
0084     "RelValDisplacedMuPt2To10" : "dm2",
0085     "RelValDisplacedMuPt10To30" : "dm10",
0086     "RelValTauToMuMuMu" : "taummm",
0087     "RelValMinBias" : "minbias",
0088     "RelValH125GGgluonfusion" : "hgg",
0089     "RelValNuGun" : "nug",
0090     "RelValZpTT_1500" : "zp1500tautau",
0091     "RelValTenTau_15_500" : "tentaus15to1500"
0092 
0093 }
0094 
0095 
0096 _pageNameMap = {
0097     "summary": "Summary",
0098     "hitCalibration": "Reconstructed hits calibration",
0099     "hitValidation" : "Simulated hits, digis, reconstructed hits validation" , 
0100     "layerClusters": "Layer clusters",
0101     "tracksters":"Tracksters", 
0102     "Tracksters":"Tracksters",
0103     "TICL-Trackster_vs_SimTracksterFromCP_byHits":"Tracksters vs SimTracksters from CPs Associatedby Hits",
0104     "TICL-Trackster_vs_SimTracksterFromCP_byLCs":"Tracksters vs SimTracksters from CPs Associatedby LayerClusters",
0105     "TICL-Trackster_vs_SimTrackster_byHits":"Tracksters vs SimTracksters Associated by Hits",
0106     "TICL-Trackster_vs_SimTrackster_byLCs":"Tracksters vs SimTracksters Associated by LayerClusters",
0107     "standalone" : "Standalone study on simulated hits, digis, reconstructed hits"   
0108 }
0109 
0110 _sectionNameMapOrder = collections.OrderedDict([
0111     ("layerClusters", "Layer clusters"),
0112     ("tracksters","Tracksters"),
0113     ("Tracksters","Tracksters"),
0114     ("TICL-Trackster_vs_SimTracksterFromCP_byHits","Tracksters vs SimTracksters from CPs Associated by Hits"),
0115     ("TICL-Trackster_vs_SimTracksterFromCP_byLCs","Tracksters vs SimTracksters from CPs Associated by LayerClusters"),
0116     ("TICL-Trackster_vs_SimTrackster_byHits","Tracksters vs SimTracksters Associated by Hits"),
0117     ("TICL-Trackster_vs_SimTrackster_byLCs","Tracksters vs SimTracksters Associated by LayerClusters"),
0118 ])
0119 
0120 #This is the summary section, where we define which plots will be shown in the summary page. 
0121 _summary = {}
0122 
0123 #Objects to keep in summary
0124 _summobj = ['hitCalibration','hitValidation', 'layerClusters','Tracksters','TICL-Trackster_vs_SimTracksterFromCP_byHits','TICL-Trackster_vs_SimTracksterFromCP_byLCs', 'TICL-Trackster_vs_SimTrackster_byHits', 'TICL-Trackster_vs_SimTrackster_byLCs' ]
0125 
0126 #Plots to keep in summary from hitCalibration
0127 summhitcalib=[
0128     'Layer_Occupancy/LayerOccupancy/LayerOccupancy.png',
0129     'ReconstructableEnergyOverCPenergy/ReconstructableEnergyOverCPenergy/h_EoP_CPene_300_calib_fraction.png',
0130     'ReconstructableEnergyOverCPenergy/ReconstructableEnergyOverCPenergy/h_EoP_CPene_200_calib_fraction.png',
0131     'ReconstructableEnergyOverCPenergy/ReconstructableEnergyOverCPenergy/h_EoP_CPene_100_calib_fraction.png',
0132     'ReconstructableEnergyOverCPenergy/ReconstructableEnergyOverCPenergy/h_EoP_CPene_scint_calib_fraction.png'
0133     ]
0134 
0135 #Plots to keep in summary from hitValidation
0136 summhitvalid = [
0137     'SimHits_Validation/HitValidation/heeEnSim.png',
0138     'SimHits_Validation/HitValidation/hebEnSim.png',
0139     'SimHits_Validation/HitValidation/hefEnSim.png']
0140                           
0141 #Plots to keep in summary from layer clusters
0142 summlc = [
0143     'hgcalLayerClusters_Z-minus: LC_CP association/Efficiencies_vs_layer/globalEfficiencies.png' ,
0144     'hgcalLayerClusters_Z-plus: LC_CP association/Efficiencies_vs_layer/globalEfficiencies.png' ,
0145     'hgcalLayerClusters_Z-minus: LC_CP association/Duplicates_vs_layer/globalEfficiencies.png' ,
0146     'hgcalLayerClusters_Z-plus: LC_CP association/Duplicates_vs_layer/globalEfficiencies.png' ,
0147     'hgcalLayerClusters_Z-minus: LC_CP association/FakeRate_vs_layer/globalEfficiencies.png' ,
0148     'hgcalLayerClusters_Z-plus: LC_CP association/FakeRate_vs_layer/globalEfficiencies.png' ,
0149     'hgcalLayerClusters_Z-minus: LC_CP association/MergeRate_vs_layer/globalEfficiencies.png' ,
0150     'hgcalLayerClusters_Z-plus: LC_CP association/MergeRate_vs_layer/globalEfficiencies.png'
0151     #'SelectedCaloParticles_Photons/SelectedCaloParticles_num_caloparticle_eta.png',
0152     #'SelectedCaloParticles_Photons/SelectedCaloParticles_caloparticle_pt.png',
0153     #'SelectedCaloParticles_Photons/SelectedCaloParticles_caloparticle_phi.png',
0154     #'SelectedCaloParticles_Photons/SelectedCaloParticles_caloparticle_energy.png',
0155     #'SelectedCaloParticles_Photons/SelectedCaloParticles_Eta vs Zorigin.png'
0156     ]
0157 
0158 #Plots to keep in summary from standalone analysis
0159 summstandalone = [
0160     'hgcalSimHitStudy/RZ_AllDetectors.png'                          
0161 ]
0162 
0163 #Let's save the above for later
0164 for obj in _summobj: 
0165     _summary[obj] = {}
0166 _summary['hitCalibration'] = summhitcalib
0167 _summary['hitValidation'] = summhitvalid
0168 _summary['layerClusters'] = summlc
0169 
0170 #Entering the geometry section 
0171 #_MatBudSections = ["allhgcal","zminus","zplus","indimat","fromvertex"]
0172 _MatBudSections = ["allhgcal","indimat","fromvertex"]
0173 
0174 _geoPageNameMap = {
0175  "allhgcal": "All materials",
0176 # "zminus" : "Zminus",
0177 # "zplus"  : "Zplus",
0178  "indimat" : "Individual materials",
0179  "fromvertex": "From vertex up to in front of muon stations"    
0180 }
0181 
0182 _individualmaterials =['Air','Aluminium','Cables','Copper','Epoxy','HGC_G10-FR4','Kapton','Lead','Other','Scintillator','Silicon','Stainless_Steel','WCu','Polystyrene','HGC_EEConnector','HGC_HEConnector']
0183 
0184 _matPageNameMap = {
0185  'Air': 'Air',
0186  'Aluminium': 'Aluminium',
0187  'Cables': 'Cables',
0188  'Copper': 'Copper',
0189  'Epoxy': 'Epoxy',
0190  'HGC_G10-FR4': 'HGC_G10-FR4',
0191  'Kapton': 'Kapton',
0192  'Lead': 'Lead',
0193  'Other': 'Other',
0194  'Scintillator': 'Scintillator',
0195  'Silicon': 'Silicon',
0196  'Stainless_Steel': 'Stainless Steel',
0197  'WCu': 'WCu',
0198  'Polystyrene' : 'Polystyrene',
0199  'HGC_EEConnector': 'CE-E Connector',   
0200  'HGC_HEConnector': 'CE-H Connector'      
0201 }
0202 
0203 _individualmatplots = {"HGCal_x_vs_z_vs_Rsum","HGCal_l_vs_z_vs_Rsum","HGCal_x_vs_z_vs_Rsumcos","HGCal_l_vs_z_vs_Rsumcos","HGCal_x_vs_z_vs_Rloc","HGCal_l_vs_z_vs_Rloc"}
0204 
0205 _allmaterialsplots = {"HGCal_x_vs_eta","HGCal_l_vs_eta","HGCal_x_vs_phi","HGCal_l_vs_phi","HGCal_x_vs_R","HGCal_l_vs_R","HGCal_x_vs_eta_vs_phi","HGCal_l_vs_eta_vs_phi","HGCal_x_vs_z_vs_Rsum","HGCal_l_vs_z_vs_Rsum","HGCal_x_vs_z_vs_Rsumcos","HGCal_l_vs_z_vs_Rsumcos","HGCal_x_vs_z_vs_Rloc","HGCal_l_vs_z_vs_Rloc"}
0206 
0207 _fromvertexplots = {"HGCal_l_vs_eta","HGCal_l_vs_z_vs_Rsum","HGCal_l_vs_z_vs_Rsum_Zpluszoom"}
0208 
0209 _individualMatPlotsDesc = {
0210 "HGCal_x_vs_z_vs_Rsum" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the accumulated material budget as seen by the track, as the track travels throughout the detector.",
0211 "HGCal_l_vs_z_vs_Rsum" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the accumulated material budget as seen by the track, as the track travels throughout the detector.",
0212 "HGCal_x_vs_z_vs_Rsumcos" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the orthogonal accumulated material budget, that is cos(theta) what the track sees. ",
0213 "HGCal_l_vs_z_vs_Rsumcos" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the orthogonal accumulated material budget, that is cos(theta) what the track sees. ",
0214 "HGCal_x_vs_z_vs_Rloc" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the local mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the local material budget as seen by the track, as the track travels throughout the detector. ",
0215 "HGCal_l_vs_z_vs_Rloc" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the local mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the local material budget as seen by the track, as the track travels throughout the detector. "
0216 }
0217 
0218 _allmaterialsPlotsDesc= {
0219     "HGCal_x_vs_eta" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of radiation length in each eta bin. 250 bins in eta (-5,5), so eta is divided in 0.04 width bins. ",
0220 
0221     "HGCal_l_vs_eta" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of interaction length in each eta bin. 250 bins in eta (-5,5), so eta is divided in 0.04 width bins. ",
0222 
0223     "HGCal_x_vs_phi" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of radiation length in each phi bin. 180 bins in phi (-3.2,3.2), so phi is divided in 0.036 rad width bins or 2.038 degrees width bins. ",
0224 
0225     "HGCal_l_vs_phi" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of interaction length in each phi bin. 180 bins in phi -3.2,3.2), so phi is divided in 0.036 rad width bins or 2.038 degrees width bins. ",
0226 
0227     "HGCal_x_vs_R" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of radiation length in each radius bin. 300 bins in radius (0,3000 mm), so radius is defined in 1 cm width bins. Both endcaps are in this histogram. Entries are huge since the radius is filled for each step of the track. Statistics in the HEB part above 1565 mm is smaller (although non visible, error is small), since in most part nothing is infront to keep account of the step. ",
0228 
0229     "HGCal_l_vs_R" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of interaction length in each radius bin. 300 bins in radius (0,3000 mm), so radius is defined in 1 cm width bins. Both endcaps are in this histogram. Entries are huge since the radius is filled for each step of the track. Statistics in the HEB part above 1565 mm is smaller (although non visible, error is small), since in most part nothing is in front to keep account of the step. ", 
0230 
0231     "HGCal_x_vs_eta_vs_phi" : "The plot on the left shows the 2D profile histogram that displays the mean value of the material budget in units of radiation length in each eta-phi cell. 180 bins in phi (-3.2,3.2), so phi is divided in 0.036 rad width bins or 2.038 degrees width bins. 250 bins in eta -5., 5., so eta is divided in 0.04 width bins. Therefore, eta-phi cell is 2.038 degrees x 0.04 . ",
0232 
0233     "HGCal_l_vs_eta_vs_phi" : "The plot on the left shows the 2D profile histogram that displays the mean value of the material budget in units of interaction length in each eta-phi cell. 180 bins in phi (-3.2,3.2), so phi is divided in 0.036 rad width bins or 2.038 degrees width bins. 250 bins in eta -5., 5., so eta is divided in 0.04 width bins. Therefore, eta-phi cell is 2.038 degrees x 0.04 . ",
0234     
0235     "HGCal_x_vs_z_vs_Rsum" : "The plots below shows the 2D profile histogram that displays the mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the accumulated material budget as seen by the track, as the track travels throughout the detector.",
0236     
0237     "HGCal_l_vs_z_vs_Rsum" : "The plots below shows the 2D profile histogram that displays the mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the accumulated material budget as seen by the track, as the track travels throughout the detector.",
0238     
0239     "HGCal_x_vs_z_vs_Rsumcos" : "The plots below shows the 2D profile histogram that displays the mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the orthogonal accumulated material budget, that is cos(theta) what the track sees. ",
0240     
0241     "HGCal_l_vs_z_vs_Rsumcos" : "The plots below shows the 2D profile histogram that displays the mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the orthogonal accumulated material budget, that is cos(theta) what the track sees. " ,   
0242     
0243     "HGCal_x_vs_z_vs_Rloc" : "The plots below shows the 2D profile histogram that displays the local mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the local material budget as seen by the track, as the track travels throughout the detector. ",
0244     
0245     "HGCal_l_vs_z_vs_Rloc" : "The plots below shows the 2D profile histogram that displays the local mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the local material budget as seen by the track, as the track travels throughout the detector. "
0246 
0247 
0248 }
0249 
0250 _fromVertexPlotsDesc = {
0251    "HGCal_x_vs_eta" : "The plot below shows the stacked profile histogram of all sub detectors in front of muon stations. This profile histogram displays the mean value of the material budget in units of radiation length in each eta bin. 250 bins in eta (-5,5), so eta is divided in 0.04 width bins. ",
0252    
0253    "HGCal_l_vs_eta" : "The plots below shows the stacked profile histogram of all sub detectors in front of muon stations. This profile histogram displays the mean value of the material budget in units of interaction length in each eta bin. 250 bins in eta (-5,5), so eta is divided in 0.04 width bins. ",
0254 
0255    "HGCal_l_vs_z_vs_Rsum" : "The plots below shows the detectors that are taken into account in the calculation of the material budget. Keep in mind that coloured regions that depicts each sub-detector area may contain Air as material.",
0256 
0257    "HGCal_l_vs_z_vs_Rsum_Zpluszoom" : "The zoomed plots below shows the detectors that are taken into account in the calculation of the material budget. Keep in mind that coloured regions that depicts each sub-detector area may contain Air as material."
0258    
0259 
0260 
0261 }
0262 
0263 _hideShowFun = { 
0264      "thestyle" : "<meta name=\"viewport\" content=\"width=device-width, initial-scale=1\"> \n <style> \n body {font-family: Arial;} \n.tab { \n  overflow: hidden; \n  border: 1px solid #ccc; \n  background-color: #f1f1f1;} \n .tab button {  background-color: inherit; \n  float: left; \n  border: none; \n  outline: none; \n  cursor: pointer; \n  padding: 14px 16px; \n  transition: 0.3s; \n  font-size: 17px; } \n .tab button:hover {  background-color: #ddd; } \n .tab button.active {  background-color: #ccc; } \n .tabcontent {  display: none; \n  padding: 6px 12px; \n  border: 1px solid #ccc; \n  border-top: none; \n} \n </style>",
0265      "buttonandFunction" : "<script> \n function openRegion(evt, regionName) { \n  var i, tabcontent, tablinks;\n  tabcontent = document.getElementsByClassName(\"tabcontent\"); \n  for (i = 0; i < tabcontent.length; i++) {\n    tabcontent[i].style.display = \"none\";\n  }\n  tablinks = document.getElementsByClassName(\"tablinks\"); \n  for (i = 0; i < tablinks.length; i++) {\n    tablinks[i].className = tablinks[i].className.replace(\" active\", \"\"); \n  }\n  document.getElementById(regionName).style.display = \"block\";\n  evt.currentTarget.className += \" active\"; \n}\n</script>\n",
0266      "divTabs" : "<div class=\"tab\">\n   <button class=\"tablinks\" onclick=\"openRegion(event, \'_AllHGCAL\')\">All HGCAL</button>\n   <button class=\"tablinks\" onclick=\"openRegion(event, \'_ZminusZoom\')\">Zminus</button>\n   <button class=\"tablinks\" onclick=\"openRegion(event, \'_ZplusZoom\')\">Zplus</button>\n </div>\n "
0267 } 
0268 
0269 
0270 
0271 
0272 
0273 
0274