File indexing completed on 2024-04-06 11:57:30
0001
0002 #include "Alignment/TwoBodyDecay/interface/TwoBodyDecayLinearizationPointFinder.h"
0003 #include "Alignment/TwoBodyDecay/interface/TwoBodyDecayModel.h"
0004 #include "DataFormats/CLHEP/interface/AlgebraicObjects.h"
0005
0006 const TwoBodyDecayParameters TwoBodyDecayLinearizationPointFinder::getLinearizationPoint(
0007 const std::vector<RefCountedLinearizedTrackState> &tracks,
0008 const double primaryMass,
0009 const double secondaryMass) const {
0010 GlobalPoint linPoint = tracks[0]->linearizationPoint();
0011 PerigeeLinearizedTrackState *linTrack1 = dynamic_cast<PerigeeLinearizedTrackState *>(tracks[0].get());
0012 PerigeeLinearizedTrackState *linTrack2 = dynamic_cast<PerigeeLinearizedTrackState *>(tracks[1].get());
0013 if (!linTrack1 || !linTrack2)
0014 return TwoBodyDecayParameters();
0015
0016 GlobalVector firstMomentum = linTrack1->predictedState().momentum();
0017 GlobalVector secondMomentum = linTrack2->predictedState().momentum();
0018
0019 AlgebraicVector secondaryMomentum1(3);
0020 secondaryMomentum1[0] = firstMomentum.x();
0021 secondaryMomentum1[1] = firstMomentum.y();
0022 secondaryMomentum1[2] = firstMomentum.z();
0023
0024 AlgebraicVector secondaryMomentum2(3);
0025 secondaryMomentum2[0] = secondMomentum.x();
0026 secondaryMomentum2[1] = secondMomentum.y();
0027 secondaryMomentum2[2] = secondMomentum.z();
0028
0029 AlgebraicVector primaryMomentum = secondaryMomentum1 + secondaryMomentum2;
0030
0031 TwoBodyDecayModel decayModel(primaryMass, secondaryMass);
0032 AlgebraicMatrix rotMat = decayModel.rotationMatrix(primaryMomentum[0], primaryMomentum[1], primaryMomentum[2]);
0033 AlgebraicMatrix invRotMat = rotMat.T();
0034
0035 double p = primaryMomentum.norm();
0036 double pSquared = p * p;
0037 double gamma = sqrt(pSquared + primaryMass * primaryMass) / primaryMass;
0038 double betaGamma = p / primaryMass;
0039 AlgebraicSymMatrix lorentzTransformation(4, 1);
0040 lorentzTransformation[0][0] = gamma;
0041 lorentzTransformation[3][3] = gamma;
0042 lorentzTransformation[0][3] = -betaGamma;
0043
0044 double p1 = secondaryMomentum1.norm();
0045 AlgebraicVector boostedLorentzMomentum1(4);
0046 boostedLorentzMomentum1[0] = sqrt(p1 * p1 + secondaryMass * secondaryMass);
0047 boostedLorentzMomentum1.sub(2, invRotMat * secondaryMomentum1);
0048
0049 AlgebraicVector restFrameLorentzMomentum1 = lorentzTransformation * boostedLorentzMomentum1;
0050 AlgebraicVector restFrameMomentum1 = restFrameLorentzMomentum1.sub(2, 4);
0051 double perp1 = sqrt(restFrameMomentum1[0] * restFrameMomentum1[0] + restFrameMomentum1[1] * restFrameMomentum1[1]);
0052 double theta1 = atan2(perp1, restFrameMomentum1[2]);
0053 double phi1 = atan2(restFrameMomentum1[1], restFrameMomentum1[0]);
0054
0055 double p2 = secondaryMomentum2.norm();
0056 AlgebraicVector boostedLorentzMomentum2(4);
0057 boostedLorentzMomentum2[0] = sqrt(p2 * p2 + secondaryMass * secondaryMass);
0058 boostedLorentzMomentum2.sub(2, invRotMat * secondaryMomentum2);
0059
0060 AlgebraicVector restFrameLorentzMomentum2 = lorentzTransformation * boostedLorentzMomentum2;
0061 AlgebraicVector restFrameMomentum2 = restFrameLorentzMomentum2.sub(2, 4);
0062 double perp2 = sqrt(restFrameMomentum2[0] * restFrameMomentum2[0] + restFrameMomentum2[1] * restFrameMomentum2[1]);
0063 double theta2 = atan2(perp2, restFrameMomentum2[2]);
0064 double phi2 = atan2(restFrameMomentum2[1], restFrameMomentum2[0]);
0065
0066 double pi = 3.141592654;
0067 double relSign = -1.;
0068
0069 if (phi1 < 0)
0070 phi1 += 2 * pi;
0071 if (phi2 < 0)
0072 phi2 += 2 * pi;
0073 if (phi1 > phi2)
0074 relSign = 1.;
0075
0076 double momentumSquared1 = secondaryMomentum1.normsq();
0077 double energy1 = sqrt(secondaryMass * secondaryMass + momentumSquared1);
0078 double momentumSquared2 = secondaryMomentum2.normsq();
0079 double energy2 = sqrt(secondaryMass * secondaryMass + momentumSquared2);
0080 double sumMomentaSquared = (secondaryMomentum1 + secondaryMomentum2).normsq();
0081 double sumEnergiesSquared = (energy1 + energy2) * (energy1 + energy2);
0082 double estimatedPrimaryMass = sqrt(sumEnergiesSquared - sumMomentaSquared);
0083
0084 AlgebraicVector linParam(TwoBodyDecayParameters::dimension, 0);
0085 linParam[TwoBodyDecayParameters::x] = linPoint.x();
0086 linParam[TwoBodyDecayParameters::y] = linPoint.y();
0087 linParam[TwoBodyDecayParameters::z] = linPoint.z();
0088 linParam[TwoBodyDecayParameters::px] = primaryMomentum[0];
0089 linParam[TwoBodyDecayParameters::py] = primaryMomentum[1];
0090 linParam[TwoBodyDecayParameters::pz] = primaryMomentum[2];
0091 linParam[TwoBodyDecayParameters::theta] = 0.5 * (theta1 - theta2 + pi);
0092 linParam[TwoBodyDecayParameters::phi] = 0.5 * (phi1 + phi2 + relSign * pi);
0093 linParam[TwoBodyDecayParameters::mass] = estimatedPrimaryMass;
0094
0095 return TwoBodyDecayParameters(linParam);
0096 }