Back to home page

Project CMSSW displayed by LXR

 
 

    


File indexing completed on 2024-04-23 22:56:29

0001 //#define BROKENLINE_DEBUG
0002 //#define BL_DUMP_HITS
0003 
0004 #include <cstdint>
0005 
0006 #include <alpaka/alpaka.hpp>
0007 
0008 #include "DataFormats/TrackingRecHitSoA/interface/TrackingRecHitsSoA.h"
0009 #include "HeterogeneousCore/AlpakaInterface/interface/config.h"
0010 #include "RecoLocalTracker/SiPixelRecHits/interface/pixelCPEforDevice.h"
0011 #include "RecoTracker/PixelTrackFitting/interface/alpaka/BrokenLine.h"
0012 
0013 #include "HelixFit.h"
0014 
0015 template <typename TrackerTraits>
0016 using Tuples = typename reco::TrackSoA<TrackerTraits>::HitContainer;
0017 template <typename TrackerTraits>
0018 using OutputSoAView = reco::TrackSoAView<TrackerTraits>;
0019 template <typename TrackerTraits>
0020 using TupleMultiplicity = caStructures::TupleMultiplicityT<TrackerTraits>;
0021 
0022 // #define BL_DUMP_HITS
0023 
0024 namespace ALPAKA_ACCELERATOR_NAMESPACE {
0025   template <int N, typename TrackerTraits>
0026   class Kernel_BLFastFit {
0027   public:
0028     template <typename TAcc, typename = std::enable_if_t<alpaka::isAccelerator<TAcc>>>
0029     ALPAKA_FN_ACC void operator()(TAcc const &acc,
0030                                   Tuples<TrackerTraits> const *__restrict__ foundNtuplets,
0031                                   TupleMultiplicity<TrackerTraits> const *__restrict__ tupleMultiplicity,
0032                                   TrackingRecHitSoAConstView<TrackerTraits> hh,
0033                                   pixelCPEforDevice::ParamsOnDeviceT<TrackerTraits> const *__restrict__ cpeParams,
0034                                   typename TrackerTraits::tindex_type *__restrict__ ptkids,
0035                                   double *__restrict__ phits,
0036                                   float *__restrict__ phits_ge,
0037                                   double *__restrict__ pfast_fit,
0038                                   uint32_t nHitsL,
0039                                   uint32_t nHitsH,
0040                                   int32_t offset) const {
0041       constexpr uint32_t hitsInFit = N;
0042       constexpr auto invalidTkId = std::numeric_limits<typename TrackerTraits::tindex_type>::max();
0043 
0044       ALPAKA_ASSERT_ACC(hitsInFit <= nHitsL);
0045       ALPAKA_ASSERT_ACC(nHitsL <= nHitsH);
0046       ALPAKA_ASSERT_ACC(phits);
0047       ALPAKA_ASSERT_ACC(pfast_fit);
0048       ALPAKA_ASSERT_ACC(foundNtuplets);
0049       ALPAKA_ASSERT_ACC(tupleMultiplicity);
0050 
0051       // look in bin for this hit multiplicity
0052       int totTK = tupleMultiplicity->end(nHitsH) - tupleMultiplicity->begin(nHitsL);
0053       ALPAKA_ASSERT_ACC(totTK <= int(tupleMultiplicity->size()));
0054       ALPAKA_ASSERT_ACC(totTK >= 0);
0055 
0056 #ifdef BROKENLINE_DEBUG
0057       const uint32_t threadIdx(alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc)[0u]);
0058       if (cms::alpakatools::once_per_grid(acc)) {
0059         printf("%d total Ntuple\n", tupleMultiplicity->size());
0060         printf("%d Ntuple of size %d/%d for %d hits to fit\n", totTK, nHitsL, nHitsH, hitsInFit);
0061       }
0062 #endif
0063       const auto nt = riemannFit::maxNumberOfConcurrentFits;
0064       for (auto local_idx : cms::alpakatools::uniform_elements(acc, nt)) {
0065         auto tuple_idx = local_idx + offset;
0066         if ((int)tuple_idx >= totTK) {
0067           ptkids[local_idx] = invalidTkId;
0068           break;
0069         }
0070         // get it from the ntuple container (one to one to helix)
0071         auto tkid = *(tupleMultiplicity->begin(nHitsL) + tuple_idx);
0072         ALPAKA_ASSERT_ACC(static_cast<int>(tkid) < foundNtuplets->nOnes());
0073 
0074         ptkids[local_idx] = tkid;
0075 
0076         auto nHits = foundNtuplets->size(tkid);
0077 
0078         ALPAKA_ASSERT_ACC(nHits >= nHitsL);
0079         ALPAKA_ASSERT_ACC(nHits <= nHitsH);
0080 
0081         riemannFit::Map3xNd<N> hits(phits + local_idx);
0082         riemannFit::Map4d fast_fit(pfast_fit + local_idx);
0083         riemannFit::Map6xNf<N> hits_ge(phits_ge + local_idx);
0084 
0085 #ifdef BL_DUMP_HITS
0086         auto &&done = alpaka::declareSharedVar<int, __COUNTER__>(acc);
0087         done = 0;
0088         alpaka::syncBlockThreads(acc);
0089         bool dump =
0090             (foundNtuplets->size(tkid) == 5 && 0 == alpaka::atomicAdd(acc, &done, 1, alpaka::hierarchy::Blocks{}));
0091 #endif
0092 
0093         // Prepare data structure
0094         auto const *hitId = foundNtuplets->begin(tkid);
0095 
0096         // #define YERR_FROM_DC
0097 #ifdef YERR_FROM_DC
0098         // try to compute more precise error in y
0099         auto dx = hh[hitId[hitsInFit - 1]].xGlobal() - hh[hitId[0]].xGlobal();
0100         auto dy = hh[hitId[hitsInFit - 1]].yGlobal() - hh[hitId[0]].yGlobal();
0101         auto dz = hh[hitId[hitsInFit - 1]].zGlobal() - hh[hitId[0]].zGlobal();
0102         float ux, uy, uz;
0103 #endif
0104 
0105         float incr = std::max(1.f, float(nHits) / float(hitsInFit));
0106         float n = 0;
0107         for (uint32_t i = 0; i < hitsInFit; ++i) {
0108           int j = int(n + 0.5f);  // round
0109           if (hitsInFit - 1 == i)
0110             j = nHits - 1;  // force last hit to ensure max lever arm.
0111           ALPAKA_ASSERT_ACC(j < int(nHits));
0112           n += incr;
0113           auto hit = hitId[j];
0114           float ge[6];
0115 
0116 #ifdef YERR_FROM_DC
0117           auto const &dp = cpeParams->detParams(hh.detectorIndex(hit));
0118           auto status = hh[hit].chargeAndStatus().status;
0119           int qbin = CPEFastParametrisation::kGenErrorQBins - 1 - status.qBin;
0120           ALPAKA_ASSERT_ACC(qbin >= 0 && qbin < 5);
0121           bool nok = (status.isBigY | status.isOneY);
0122           // compute cotanbeta and use it to recompute error
0123           dp.frame.rotation().multiply(dx, dy, dz, ux, uy, uz);
0124           auto cb = std::abs(uy / uz);
0125           int bin =
0126               int(cb * (float(phase1PixelTopology::pixelThickess) / float(phase1PixelTopology::pixelPitchY)) * 8.f) - 4;
0127           int low_value = 0;
0128           int high_value = CPEFastParametrisation::kNumErrorBins - 1;
0129           // return estimated bin value truncated to [0, 15]
0130           bin = std::clamp(bin, low_value, high_value);
0131           float yerr = dp.sigmay[bin] * 1.e-4f;  // toCM
0132           yerr *= dp.yfact[qbin];                // inflate
0133           yerr *= yerr;
0134           yerr += dp.apeYY;
0135           yerr = nok ? hh[hit].yerrLocal() : yerr;
0136           dp.frame.toGlobal(hh[hit].xerrLocal(), 0, yerr, ge);
0137 #else
0138           cpeParams->detParams(hh[hit].detectorIndex()).frame.toGlobal(hh[hit].xerrLocal(), 0, hh[hit].yerrLocal(), ge);
0139 #endif
0140 
0141 #ifdef BL_DUMP_HITS
0142           bool dump = foundNtuplets->size(tkid) == 5;
0143           if (dump) {
0144             printf("Track id %d %d Hit %d on %d\nGlobal: hits.col(%d) << %f,%f,%f\n",
0145                    local_idx,
0146                    tkid,
0147                    hit,
0148                    hh[hit].detectorIndex(),
0149                    i,
0150                    hh[hit].xGlobal(),
0151                    hh[hit].yGlobal(),
0152                    hh[hit].zGlobal());
0153             printf("Error: hits_ge.col(%d) << %e,%e,%e,%e,%e,%e\n", i, ge[0], ge[1], ge[2], ge[3], ge[4], ge[5]);
0154           }
0155 #endif
0156 
0157           hits.col(i) << hh[hit].xGlobal(), hh[hit].yGlobal(), hh[hit].zGlobal();
0158           hits_ge.col(i) << ge[0], ge[1], ge[2], ge[3], ge[4], ge[5];
0159         }
0160         brokenline::fastFit(acc, hits, fast_fit);
0161 
0162 #ifdef BROKENLINE_DEBUG
0163         // any NaN value should cause the track to be rejected at a later stage
0164         ALPAKA_ASSERT_ACC(not alpaka::math::isnan(acc, fast_fit(0)));
0165         ALPAKA_ASSERT_ACC(not alpaka::math::isnan(acc, fast_fit(1)));
0166         ALPAKA_ASSERT_ACC(not alpaka::math::isnan(acc, fast_fit(2)));
0167         ALPAKA_ASSERT_ACC(not alpaka::math::isnan(acc, fast_fit(3)));
0168 #endif
0169       }
0170     }
0171   };
0172 
0173   template <int N, typename TrackerTraits>
0174   struct Kernel_BLFit {
0175   public:
0176     template <typename TAcc, typename = std::enable_if_t<alpaka::isAccelerator<TAcc>>>
0177     ALPAKA_FN_ACC void operator()(TAcc const &acc,
0178                                   TupleMultiplicity<TrackerTraits> const *__restrict__ tupleMultiplicity,
0179                                   double bField,
0180                                   OutputSoAView<TrackerTraits> results_view,
0181                                   typename TrackerTraits::tindex_type const *__restrict__ ptkids,
0182                                   double *__restrict__ phits,
0183                                   float *__restrict__ phits_ge,
0184                                   double *__restrict__ pfast_fit) const {
0185       ALPAKA_ASSERT_ACC(results_view.pt());
0186       ALPAKA_ASSERT_ACC(results_view.eta());
0187       ALPAKA_ASSERT_ACC(results_view.chi2());
0188       ALPAKA_ASSERT_ACC(pfast_fit);
0189       constexpr auto invalidTkId = std::numeric_limits<typename TrackerTraits::tindex_type>::max();
0190 
0191       // same as above...
0192       // look in bin for this hit multiplicity
0193       const auto nt = riemannFit::maxNumberOfConcurrentFits;
0194       for (auto local_idx : cms::alpakatools::uniform_elements(acc, nt)) {
0195         if (invalidTkId == ptkids[local_idx])
0196           break;
0197         auto tkid = ptkids[local_idx];
0198 
0199         ALPAKA_ASSERT_ACC(tkid < TrackerTraits::maxNumberOfTuples);
0200 
0201         riemannFit::Map3xNd<N> hits(phits + local_idx);
0202         riemannFit::Map4d fast_fit(pfast_fit + local_idx);
0203         riemannFit::Map6xNf<N> hits_ge(phits_ge + local_idx);
0204 
0205         brokenline::PreparedBrokenLineData<N> data;
0206 
0207         brokenline::karimaki_circle_fit circle;
0208         riemannFit::LineFit line;
0209 
0210         brokenline::prepareBrokenLineData(acc, hits, fast_fit, bField, data);
0211         brokenline::lineFit(acc, hits_ge, fast_fit, bField, data, line);
0212         brokenline::circleFit(acc, hits, hits_ge, fast_fit, bField, data, circle);
0213 
0214         TracksUtilities<TrackerTraits>::copyFromCircle(
0215             results_view, circle.par, circle.cov, line.par, line.cov, 1.f / float(bField), tkid);
0216         results_view[tkid].pt() = float(bField) / float(std::abs(circle.par(2)));
0217         results_view[tkid].eta() = alpaka::math::asinh(acc, line.par(0));
0218         results_view[tkid].chi2() = (circle.chi2 + line.chi2) / (2 * N - 5);
0219 
0220 #ifdef BROKENLINE_DEBUG
0221         if (!(circle.chi2 >= 0) || !(line.chi2 >= 0))
0222           printf("kernelBLFit failed! %f/%f\n", circle.chi2, line.chi2);
0223         printf("kernelBLFit size %d for %d hits circle.par(0,1,2): %d %f,%f,%f\n",
0224                N,
0225                N,
0226                tkid,
0227                circle.par(0),
0228                circle.par(1),
0229                circle.par(2));
0230         printf("kernelBLHits line.par(0,1): %d %f,%f\n", tkid, line.par(0), line.par(1));
0231         printf("kernelBLHits chi2 cov %f/%f  %e,%e,%e,%e,%e\n",
0232                circle.chi2,
0233                line.chi2,
0234                circle.cov(0, 0),
0235                circle.cov(1, 1),
0236                circle.cov(2, 2),
0237                line.cov(0, 0),
0238                line.cov(1, 1));
0239 #endif
0240       }
0241     }
0242   };
0243 
0244   template <typename TrackerTraits>
0245   void HelixFit<TrackerTraits>::launchBrokenLineKernels(
0246       const TrackingRecHitSoAConstView<TrackerTraits> &hv,
0247       pixelCPEforDevice::ParamsOnDeviceT<TrackerTraits> const *cpeParams,
0248       uint32_t hitsInFit,
0249       uint32_t maxNumberOfTuples,
0250       Queue &queue) {
0251     ALPAKA_ASSERT_ACC(tuples_);
0252 
0253     uint32_t blockSize = 64;
0254     uint32_t numberOfBlocks = cms::alpakatools::divide_up_by(maxNumberOfConcurrentFits_, blockSize);
0255     const WorkDiv1D workDivTriplets = cms::alpakatools::make_workdiv<Acc1D>(numberOfBlocks, blockSize);
0256     const WorkDiv1D workDivQuadsPenta = cms::alpakatools::make_workdiv<Acc1D>(numberOfBlocks / 4, blockSize);
0257 
0258     //  Fit internals
0259     auto tkidDevice =
0260         cms::alpakatools::make_device_buffer<typename TrackerTraits::tindex_type[]>(queue, maxNumberOfConcurrentFits_);
0261     auto hitsDevice = cms::alpakatools::make_device_buffer<double[]>(
0262         queue, maxNumberOfConcurrentFits_ * sizeof(riemannFit::Matrix3xNd<6>) / sizeof(double));
0263     auto hits_geDevice = cms::alpakatools::make_device_buffer<float[]>(
0264         queue, maxNumberOfConcurrentFits_ * sizeof(riemannFit::Matrix6xNf<6>) / sizeof(float));
0265     auto fast_fit_resultsDevice = cms::alpakatools::make_device_buffer<double[]>(
0266         queue, maxNumberOfConcurrentFits_ * sizeof(riemannFit::Vector4d) / sizeof(double));
0267 
0268     for (uint32_t offset = 0; offset < maxNumberOfTuples; offset += maxNumberOfConcurrentFits_) {
0269       // fit triplets
0270 
0271       alpaka::exec<Acc1D>(queue,
0272                           workDivTriplets,
0273                           Kernel_BLFastFit<3, TrackerTraits>{},
0274                           tuples_,
0275                           tupleMultiplicity_,
0276                           hv,
0277                           cpeParams,
0278                           tkidDevice.data(),
0279                           hitsDevice.data(),
0280                           hits_geDevice.data(),
0281                           fast_fit_resultsDevice.data(),
0282                           3,
0283                           3,
0284                           offset);
0285 
0286       alpaka::exec<Acc1D>(queue,
0287                           workDivTriplets,
0288                           Kernel_BLFit<3, TrackerTraits>{},
0289                           tupleMultiplicity_,
0290                           bField_,
0291                           outputSoa_,
0292                           tkidDevice.data(),
0293                           hitsDevice.data(),
0294                           hits_geDevice.data(),
0295                           fast_fit_resultsDevice.data());
0296 
0297       if (fitNas4_) {
0298         // fit all as 4
0299         riemannFit::rolling_fits<4, TrackerTraits::maxHitsOnTrack, 1>([this,
0300                                                                        &hv,
0301                                                                        &cpeParams,
0302                                                                        &tkidDevice,
0303                                                                        &hitsDevice,
0304                                                                        &hits_geDevice,
0305                                                                        &fast_fit_resultsDevice,
0306                                                                        &offset,
0307                                                                        &queue,
0308                                                                        &workDivQuadsPenta](auto i) {
0309           alpaka::exec<Acc1D>(queue,
0310                               workDivQuadsPenta,
0311                               Kernel_BLFastFit<4, TrackerTraits>{},
0312                               tuples_,
0313                               tupleMultiplicity_,
0314                               hv,
0315                               cpeParams,
0316                               tkidDevice.data(),
0317                               hitsDevice.data(),
0318                               hits_geDevice.data(),
0319                               fast_fit_resultsDevice.data(),
0320                               4,
0321                               4,
0322                               offset);
0323 
0324           alpaka::exec<Acc1D>(queue,
0325                               workDivQuadsPenta,
0326                               Kernel_BLFit<4, TrackerTraits>{},
0327                               tupleMultiplicity_,
0328                               bField_,
0329                               outputSoa_,
0330                               tkidDevice.data(),
0331                               hitsDevice.data(),
0332                               hits_geDevice.data(),
0333                               fast_fit_resultsDevice.data());
0334         });
0335 
0336       } else {
0337         riemannFit::rolling_fits<4, TrackerTraits::maxHitsOnTrackForFullFit, 1>([this,
0338                                                                                  &hv,
0339                                                                                  &cpeParams,
0340                                                                                  &tkidDevice,
0341                                                                                  &hitsDevice,
0342                                                                                  &hits_geDevice,
0343                                                                                  &fast_fit_resultsDevice,
0344                                                                                  &offset,
0345                                                                                  &queue,
0346                                                                                  &workDivQuadsPenta](auto i) {
0347           alpaka::exec<Acc1D>(queue,
0348                               workDivQuadsPenta,
0349                               Kernel_BLFastFit<i, TrackerTraits>{},
0350                               tuples_,
0351                               tupleMultiplicity_,
0352                               hv,
0353                               cpeParams,
0354                               tkidDevice.data(),
0355                               hitsDevice.data(),
0356                               hits_geDevice.data(),
0357                               fast_fit_resultsDevice.data(),
0358                               i,
0359                               i,
0360                               offset);
0361 
0362           alpaka::exec<Acc1D>(queue,
0363                               workDivQuadsPenta,
0364                               Kernel_BLFit<i, TrackerTraits>{},
0365                               tupleMultiplicity_,
0366                               bField_,
0367                               outputSoa_,
0368                               tkidDevice.data(),
0369                               hitsDevice.data(),
0370                               hits_geDevice.data(),
0371                               fast_fit_resultsDevice.data());
0372         });
0373 
0374         static_assert(TrackerTraits::maxHitsOnTrackForFullFit < TrackerTraits::maxHitsOnTrack);
0375 
0376         //Fit all the rest using the maximum from previous call
0377         alpaka::exec<Acc1D>(queue,
0378                             workDivQuadsPenta,
0379                             Kernel_BLFastFit<TrackerTraits::maxHitsOnTrackForFullFit, TrackerTraits>{},
0380                             tuples_,
0381                             tupleMultiplicity_,
0382                             hv,
0383                             cpeParams,
0384                             tkidDevice.data(),
0385                             hitsDevice.data(),
0386                             hits_geDevice.data(),
0387                             fast_fit_resultsDevice.data(),
0388                             TrackerTraits::maxHitsOnTrackForFullFit,
0389                             TrackerTraits::maxHitsOnTrack - 1,
0390                             offset);
0391 
0392         alpaka::exec<Acc1D>(queue,
0393                             workDivQuadsPenta,
0394                             Kernel_BLFit<TrackerTraits::maxHitsOnTrackForFullFit, TrackerTraits>{},
0395                             tupleMultiplicity_,
0396                             bField_,
0397                             outputSoa_,
0398                             tkidDevice.data(),
0399                             hitsDevice.data(),
0400                             hits_geDevice.data(),
0401                             fast_fit_resultsDevice.data());
0402       }
0403 
0404     }  // loop on concurrent fits
0405   }
0406 
0407   template class HelixFit<pixelTopology::Phase1>;
0408   template class HelixFit<pixelTopology::Phase2>;
0409   template class HelixFit<pixelTopology::HIonPhase1>;
0410 
0411 }  // namespace ALPAKA_ACCELERATOR_NAMESPACE